Advertisement

A Computer-Based Learning Environment About Quadratic Functions with Different Kinds of Feedback: Pilot Study and Research Design

  • Elena JedtkeEmail author
  • Gilbert Greefrath
Chapter
Part of the Mathematics Education in the Digital Era book series (MEDE, volume 13)

Abstract

Feedback is an essential aspect of computer-based learning environments (CBLE). However, the effect of specific types of feedback on the mathematics performance and self-rating ability of students has not yet been definitively established. To resolve this knowledge gap, we plan to conduct a (quasi-) experimental study with 8th- and 9th-grade students in high schools (Gymnasium) in North Rhine-Westphalia, Germany. The study is going to use a MediaWiki-based CBLE named “Discover Quadratic Functions”. This chapter gives an overview of existing research on CBLE design principles and feedback types. Moreover, the theoretical decisions underlying the design of the CBLE on quadratic functions are presented and explained. Finally, we focus on the results of a qualitative preliminary study, as well as the design of the upcoming main study.

Keywords

Computer-Based learning environment Quadratic functions Feedback (response) Mathematics achievement 

References

  1. Attali, Y. (2015). Effects of multiple-try feedback and question type during mathematics problem solving on performance in similar problems. Computers & Education, 86, 260–267.CrossRefGoogle Scholar
  2. Azevedo, R., & Bernard, R. (1995). A meta-analysis of the effects of feedback in computer-based instruction. Journal of Educational Computing Research, 13(2), 111–127.CrossRefGoogle Scholar
  3. Baker, R. S. J., D’Mello, S. K., Rodrigo, M. M. T., & Graesser, A. C. (2010). Better to be frustrated than bored: The incidence, persistence, and impact of learners’ cognitive-affective states during interactions with three different computer-based learning environments. International Journal of Human-Computer Studies, 68(4), 223–241.CrossRefGoogle Scholar
  4. Balacheff, N., & Kaput, J. J. (1996). Computer-based learning environments in mathematics. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education: Part 1 (pp. 469–501).  https://doi.org/10.1007/978-94-009-1465-0_14.CrossRefGoogle Scholar
  5. Bangert-Drowns, R. L., Kulik, C.-L. C., Kulik, J. A., & Morgan, M. T. (1991). The instructional effect of feedback in test-like events. Review of Educational Research, 61(2), 213–238.  https://doi.org/10.3102/00346543061002213.CrossRefGoogle Scholar
  6. Bimba, A. T., Idris, N., Al-Hunaiyyan, A., Mahmud, R. B., & Shuib, N. L. M. (2017). Adaptive feedback in computer-based learning environments: A review. Adaptive Behavior, 25(5), 217–234.  https://doi.org/10.1177/1059712317727590.CrossRefGoogle Scholar
  7. Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy & Practice, 5(1), 7–74.  https://doi.org/10.1080/0969595980050102.CrossRefGoogle Scholar
  8. Boud, D., & Molloy, E. (2013). Rethinking models of feedback for learning: The challenge of design. Assessment & Evaluation in Higher Education, 38(6), 698–712.CrossRefGoogle Scholar
  9. Corbett, A. T., & Anderson, J. R. (2001). Locus of feedback control in computer-based tutoring: Impact on learning rate, achievement and attitudes. In J. Jacko, A. Sears, M. Beaudouin-Lafon, & R. Jacob (Eds.), Proceedings of ACM CHI’2001 Conference on Human Factors in Computing Systems (pp. 245–252). New York: ACM Press.Google Scholar
  10. Dempsey, J. V., Driscoll, M. P., & Swindell, L. K. (1993). Text-based feedback. In J. V. Dempsey & G. C. Sales (Eds.), Interactive instruction and feedback (pp. 21–54). Englewood Cliffs, NJ: Educational Technology.Google Scholar
  11. Doorman, M., Drijvers, P., Gravemeijer, K., Boon, P., & Reed, H. (2012). Tool use and the development of the function concept: From repeated calculations to functional thinking. International Journal of Science and Mathematics Education, 10(6), 1243–1267.CrossRefGoogle Scholar
  12. Federal Ministry of Education and Research. (2016). Bildungsoffensive für die digitale Wissensgesellschaft. Strategie des Bundesministeriums für Bildung und Forschung. Retrieved from https://www.bmbf.de/files/Bildungsoffensive_fuer_die_digitale_Wissensgesellschaft.pdf.
  13. Fyfe, E. R. (2016). Providing feedback on computer-based algebra homework in middle-school classrooms. Computers in Human Behavior, 63, 568–574.  https://doi.org/10.1016/j.chb.2016.05.082.CrossRefGoogle Scholar
  14. German Education Server. (2014). Open Educational Resources (OER). An Overview of Initiatives Worldwide. Retrieved from http://www.bildungsserver.de/Open-Educational-Resources-OER-an-Overview-of-Initiatives-Worldwide-6998_eng.html.
  15. Greefrath, G., Oldenburg, R., Siller, H.-S., Ulm, V., & Weigand, H.-G. (2016). Didaktik der Analysis. Aspekte und Grundvorstellungen zentraler Begriffe. Berlin and Heidelberg: Springer Spektrum.Google Scholar
  16. Hattie, J. (2009). Visible learning: A synthesis of 800+ meta-analyses on achievement. Abington: Routledge.Google Scholar
  17. Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112.  https://doi.org/10.3102/003465430298487.CrossRefGoogle Scholar
  18. Isaacs, W., & Senge, P. (1992). Overcoming limits to learning in computer-based learning environments. European Journal of Operational Research, 59(1), 183–196.  https://doi.org/10.1016/0377-2217(92)90014-Z.CrossRefGoogle Scholar
  19. Kulhavy, R. W., & Stock, W. A. (1989). Feedback in written instruction: The place of response certitude. Educational Psychology Review, 1(4), 279–308.CrossRefGoogle Scholar
  20. Malle, G. (2000). Zwei Aspekte von Funktionen: Zuordnung und Kovariation. mathematik lehren, 118, 57–62.Google Scholar
  21. Mathematik-digital. (2006). Was ist ein guter Lernpfad? - Qualitätskriterien. Hrsg. vom Arbeitskreis Mathematik digital. Retrieved from http://wiki.zum.de/Mathematik-digital/Kriterienkatalog, version of 18.11.2017.
  22. Mayring, P. (2010). Qualitative Inhaltsanalyse. Grundlagen und Techniken (11 revised ed.). Weinheim and Basel: Beltz.Google Scholar
  23. Mory, E. H. (2004). Feedback research revisited. In D. H. Jonassen (Eds.), Handbook of research on educational communications and technology (2nd ed., pp. 745–783). Taylor & Francis.Google Scholar
  24. Nelson, M. M., & Schunn, C. D. (2009). The nature of feedback: How different types of peer feedback affect writing performance. Instructional Science, 37(4), 375–401.  https://doi.org/10.1007/s11251-008-9053-x.CrossRefGoogle Scholar
  25. Nicol, D. J., & Macfarlane-Dick, D. (2006). Formative assessment and self-regulated learning: A model and seven principles of good feedback practice. Studies in Higher Education, 31(2), 199–218.CrossRefGoogle Scholar
  26. Nitsch, R. (2015). Diagnose von Lernschwierigkeiten im Bereich funktionaler Zusammenhänge. Eine Studie zu typischen Fehlermustern bei Darstellungswechseln. Wiesbaden: Springer Spektrum.CrossRefGoogle Scholar
  27. OECD. (2017). Open Educational Resources (OER). Retrieved from http://www.oecd.org/edu/ceri/open-educational-resources-oer.htm.
  28. Roth, J. (2015). Lernpfade: Definition, Gestaltungskriterien und Unterrichtseinsatz. In J. Roth, E. Süss-Stepancik, & H. Wiesner (Eds.), Medienvielfalt im Mathematikunterricht. Lernpfade als Weg zum Ziel (pp. 3–25). Wiesbaden: Springer Spektrum.Google Scholar
  29. Sadler, D. R. (1989). Formative assessment and the design of instructional systems. Instructional Science, 18, 119–144.CrossRefGoogle Scholar
  30. SCMECA—Standing Conference of the Ministers of Education and Cultural Affairs. (2003). Bildungsstandards im Fach Mathematik für den Mittleren Schulabschluss. Wolters Kluver.Google Scholar
  31. SCMECA—Standing Conference of the Ministers of Education and Cultural Affairs. (2016). Bildung in der digitalen Welt. Strategie der Kultusministerkonferenz. Retrieved from https://www.kmk.org/fileadmin/Dateien/pdf/PresseUndAktuelles/2016/Bildung_digitale_Welt_Webversion.pdf.
  32. Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research, 78(1), 153–189.  https://doi.org/10.3102/0034654307313795.CrossRefGoogle Scholar
  33. Sur, C. (2017). Selbstgesteuertes Lernen mit Lernpfaden im Mathematikunterricht aus Sicht der Lernenden – Eine qualitative Untersuchung auf Basis von Interviews. Unpublished master thesis, University of Münster.Google Scholar
  34. Swan, M. (1982). The teaching of functions and graphs. In Proceedings of the Conference on Functions (pp. 151–165). Enschede, The Netherlands: National Institute for Curriculum Development.Google Scholar
  35. Van der Kleij, F. M., Feskens, R. C. W., & Eggen, T. J. H. M. (2015). Effects of feedback in a computer-based learning environment on student’s learning outcomes: A meta-analysis. Review of Educational Research, 85(4), 475–511.  https://doi.org/10.3102/0034654314564881.CrossRefGoogle Scholar
  36. Vollrath, H.-J. (1989). Funktionales Denken. Journal für Mathematikdidaktik, 10(1), 3–37.CrossRefGoogle Scholar
  37. Vollrath, H.-J. (2014). Funktionale Zusammenhänge. In H. Linneweber-Lammerskitten (Ed.), Fachdidaktik Mathematik. Friedrich: Seelze.Google Scholar
  38. Vollrath, H.-J., & Roth, J. (2012). Grundlagen des Mathematikunterrichts in der Sekundarstufe (2nd ed.). Heidelberg: Springer Spektrum.CrossRefGoogle Scholar
  39. Wiesner, H., & Wiesner-Steiner, A. (2015). Einschätzungen zu Lernpfaden – Eine empirische Exploration. In J. Roth, E. Süss-Stepancik, & H. Wiesner (Eds.), Medienvielfalt im Mathematikunterricht. Lernpfade als Weg zum Ziel (pp. 27–45). Wiesbaden: Springer Spektrum.Google Scholar
  40. Zaslavsky, O. (1997). Conceptual obstacles in the learning of quadratic functions. Focus on Learning Problems in Mathematics Winter Edition, 19(1), 20–44.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of MünsterMünsterGermany

Personalised recommendations