Advertisement

Abstraction for Non-ground Answer Set Programs

  • Zeynep G. Saribatur
  • Peter SchüllerEmail author
  • Thomas Eiter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11468)

Abstract

We address the issue of abstraction, a widely used notion to simplify problems, in the context of Answer Set Programming (ASP), which is a highly expressive formalism and a convenient tool for declarative problem solving. We introduce a method to automatically abstract non-ground ASP programs given an abstraction over the domain, which ensures that each original answer set is mapped to some abstract answer set. We discuss abstraction possibilities on several examples and show the use of abstraction to gain insight into problem instances, e.g., domain details irrelevant for problem solving; this makes abstraction attractive for getting to the essence of the problem. We also provide a tool implementing automatic abstraction from an input program.

Notes

Acknowledgements

This work has been supported by Austrian Science Fund (FWF) project W1255-N23 and Austrian Federal Ministry of Transport Innovation and Technology (BMVIT) project 861263 (DynaCon).

References

  1. 1.
    ASPCOMP-11: Third (open) answer set programming competition: Disjunctive scheduling (2011). www.mat.unical.it/aspcomp2011
  2. 2.
    Banihashemi, B., De Giacomo, G., Lespérance, Y.: Abstraction in situation calculus action theories. In: Proceedings of AAAI, pp. 1048–1055 (2017)Google Scholar
  3. 3.
    Belardinelli, F., Lomuscio, A.: Abstraction-based verification of infinite-state reactive modules. In: Proceedings of ECAI, pp. 725–733 (2016)Google Scholar
  4. 4.
    Belardinelli, F., Lomuscio, A., Michaliszyn, J.: Agent-based refinement for predicate abstraction of multi-agent systems. In: ECAI, pp. 286–294 (2016)Google Scholar
  5. 5.
    Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging ASP programs by means of ASP. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 31–43. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72200-7_5CrossRefGoogle Scholar
  6. 6.
    Brass, S., Dix, J.: Characterizations of the disjunctive stable semantics by partial evaluation. J. Log. Program. 32(3), 207–228 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  8. 8.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM TOPLAS 16, 1512–1542 (1994)CrossRefGoogle Scholar
  9. 9.
    Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs. J. Log. Program. 13(2), 103–179 (1992)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Edelkamp, S.: Planning with pattern databases. In: Sixth European Conference on Planning (2001)Google Scholar
  11. 11.
    Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30227-8_19CrossRefzbMATHGoogle Scholar
  12. 12.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89982-2_23CrossRefGoogle Scholar
  13. 13.
    Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: the potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Geißer, F., Keller, T., Mattmüller, R.: Abstractions for planning with state-dependent action costs. In: ICAPS, pp. 140–148 (2016)Google Scholar
  15. 15.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP/SLP, pp. 1070–1080 (1988)Google Scholar
  16. 16.
    Giunchiglia, F., Walsh, T.: A theory of abstraction. AIJ 57(2–3), 323–389 (1992)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Helmert, M., Haslum, P., Hoffmann, J., Nissim, R.: Merge-and-shrink abstraction: a method for generating lower bounds in factored state spaces. JACM 61(3), 16 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hoffmann, J., Sabharwal, A., Domshlak, C.: Friends or Foes? An AI planning perspective on abstraction and search. In: ICAPS, pp. 294–303 (2006)Google Scholar
  19. 19.
    Illanes, L., McIlraith, S.A.: Numeric planning via search space abstraction. In: Proceedings of KnowProS@IJCAI (2016)Google Scholar
  20. 20.
    Illanes, L., McIlraith, S.A.: Generalized planning via abstraction: arbitrary numbers of objects. In: AAAI (2019)Google Scholar
  21. 21.
    Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding partiality and disjunctions in stable model semantics. ACM TOCL 7(1), 1–37 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Knoblock, C.A.: Automatically generating abstractions for planning. Artif. Intell. 68(2), 243–302 (1994)CrossRefGoogle Scholar
  23. 23.
    Kouvaros, P., Lomuscio, A.: A counter abstraction technique for the verification of robot swarms. In: Proceedings of AAAI (2015)Google Scholar
  24. 24.
    Leite, J.: A bird’s-eye view of forgetting in answer-set programming. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 10–22. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61660-5_2CrossRefGoogle Scholar
  25. 25.
    Lomuscio, A., Michaliszyn, J.: Verification of multi-agent systems via predicate abstraction against ATLK specifications. In: Proceedings of AAMAS, pp. 662–670 (2016)Google Scholar
  26. 26.
    Pearce, D.: Simplifying logic programs under answer set semantics. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 210–224. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27775-0_15CrossRefzbMATHGoogle Scholar
  27. 27.
    Riddle, P., Douglas, J., Barley, M., Franco, S.: Improving performance by reformulating PDDL into a bagged representation. In: HSDIP@ICAPS, pp. 28–36 (2016)Google Scholar
  28. 28.
    Sacerdoti, E.D.: Planning in a hierarchy of abstraction spaces. Artif. Intell. 5(2), 115–135 (1974)CrossRefGoogle Scholar
  29. 29.
    Saribatur, Z.G., Eiter, T.: Omission-based abstraction for answer set programs. In: Proceedings of KR, pp. 42–51 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Logic and ComputationTU WienViennaAustria

Personalised recommendations