Advertisement

Lower Bound Founded Logic of Here-and-There

  • Pedro Cabalar
  • Jorge Fandinno
  • Torsten SchaubEmail author
  • Sebastian Schellhorn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11468)

Abstract

A distinguishing feature of Answer Set Programming is that all atoms belonging to a stable model must be founded. That is, an atom must not only be true but provably true. This can be made precise by means of the constructive logic of Here-and-There, whose equilibrium models correspond to stable models. One way of looking at foundedness is to regard Boolean truth values as ordered by letting true be greater than false. Then, each Boolean variable takes the smallest truth value that can be proven for it. This idea was generalized by Aziz to ordered domains and applied to constraint satisfaction problems. As before, the idea is that a, say integer, variable gets only assigned to the smallest integer that can be justified. In this paper, we present a logical reconstruction of Aziz’ idea in the setting of the logic of Here-and-There. More precisely, we start by defining the logic of Here-and-There with lower bound founded variables along with its equilibrium models and elaborate upon its formal properties. Finally, we compare our approach with related ones and sketch future work.

References

  1. 1.
    Aziz, R.: Answer set programming: founded bounds and model counting. Ph.D. thesis, University of Melbourne (2015)Google Scholar
  2. 2.
    Balduccini, M.: Representing constraint satisfaction problems in answer set programming. In: Faber, W., Lee, J. (eds.) Proceedings of the Second Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP 2009), pp. 16–30 (2009)Google Scholar
  3. 3.
    Banbara, M., et al.: aspartame: solving constraint satisfaction problems with answer set programming. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 112–126. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23264-5_10CrossRefGoogle Scholar
  4. 4.
    Banbara, M., Kaufmann, B., Ostrowski, M., Schaub, T.: Clingcon: the next generation. Theory Pract. Log. Program. 17(4), 408–461 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  6. 6.
    Bartholomew, M., Lee, J.: System aspmt2smt: computing ASPMT theories by SMT solvers. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 529–542. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11558-0_37CrossRefGoogle Scholar
  7. 7.
    Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an integration of answer set and constraint solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 52–66. Springer, Heidelberg (2005).  https://doi.org/10.1007/11562931_7CrossRefGoogle Scholar
  8. 8.
    Cabalar, P., Kaminski, R., Ostrowski, M., Schaub, T.: An ASP semantics for default reasoning with constraints. In: Kambhampati, R. (ed.) Proceedings of the Twenty-fifth International Joint Conference on Artificial Intelligence (IJCAI 2016), pp. 1015–1021. IJCAI/AAAI Press (2016)Google Scholar
  9. 9.
    Carro, M., King, A. (eds.): Technical Communications of the Thirty-second International Conference on Logic Programming (ICLP 2016), vol. 52. Open Access Series in Informatics (OASIcs) (2016)Google Scholar
  10. 10.
    Drescher, C., Walsh, T.: A translational approach to constraint answer set solving. Theory Pract. Log. Program. 10(4–6), 465–480 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg (2005).  https://doi.org/10.1007/11546207_10CrossRefGoogle Scholar
  12. 12.
    Ferraris, P.: Logic programs with propositional connectives and aggregates. ACM Trans. Comput. Log. 12(4), 25 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory solving made easy with clingo 5. In: Carro, M., King, A. (eds.) [9], pp. 2:1–2:15 (2016)Google Scholar
  14. 14.
    Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 235–249. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02846-5_22CrossRefGoogle Scholar
  15. 15.
    Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  16. 16.
    Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Warren, D., Szeredi, P. (eds.) Proceedings of the Seventh International Conference on Logic Programming (ICLP 1990), pp. 579–597. MIT Press (1990)Google Scholar
  17. 17.
    Heyting, A.: Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte der Preussischen Akademie der Wissenschaften, p. 42–56. Deutsche Akademie der Wissenschaften zu Berlin (1930). Reprint in Logik-Texte: Kommentierte Auswahl zur Geschichte der Modernen Logik, Akademie-Verlag (1986)Google Scholar
  18. 18.
    Janhunen, T., Kaminski, R., Ostrowski, M., Schaub, T., Schellhorn, S., Wanko, P.: Clingo goes linear constraints over reals and integers. Theory Pract. Log. Program. 17(5–6), 872–888 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Janhunen, T., Liu, G., Niemelä, I.: Tight integration of non-ground answer set programming and satisfiability modulo theories. In: Cabalar, P., Mitchell, D., Pearce, D., Ternovska, E. (eds.) Proceedings of the First Workshop on Grounding and Transformation for Theories with Variables (GTTV 2011), pp. 1–13 (2011)Google Scholar
  20. 20.
    Leone, N., Rullo, P., Scarcello, F.: Disjunctive stable models: unfounded sets, fixpoint semantics, and computation. Inf. Comput. 135(2), 69–112 (1997)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lierler, Y., Susman, B.: SMT-based constraint answer set solver EZSMT (system description). In: Carro, M., King, A. (eds.) [9], pp. 1:1–1:15 (2016)Google Scholar
  22. 22.
    Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer programming. In: Brewka, G., Eiter, T., McIlraith, S. (eds.) Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2012), pp. 32–42. AAAI Press (2012)Google Scholar
  23. 23.
    Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1–2), 3–41 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Schrijver, A.: Theory of linear and integer programming. Discrete mathematics and optimization. Wiley, Hoboken (1999)zbMATHGoogle Scholar
  25. 25.
    Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs. J. ACM 38(3), 620–650 (1991)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of CorunnaA CoruñaSpain
  2. 2.University of ToulouseToulouseFrance
  3. 3.University of PotsdamPotsdamGermany

Personalised recommendations