Advertisement

Algorithm Selection for Paracoherent Answer Set Computation

  • Giovanni AmendolaEmail author
  • Carmine Dodaro
  • Wolfgang Faber
  • Luca Pulina
  • Francesco Ricca
Conference paper
  • 364 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11468)

Abstract

Answer Set Programming (ASP) is a well-established AI formalism rooted in nonmonotonic reasoning. Paracoherent semantics for ASP have been proposed to derive useful conclusions also in the absence of answer sets caused by cyclic default negation. Recently, several different algorithms have been proposed to implement them, but no algorithm is always preferable to the others in all instances. In this paper, we apply algorithm selection techniques to devise a more efficient paracoherent answer set solver combining existing algorithms. The effectiveness of the approach is demonstrated empirically running our system on existing benchmarks.

Notes

Acknowledgments

This work has been supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No. 690974 for the project “MIREL: MIning and REasoning with Legal texts”.

References

  1. 1.
    Adrian, W.T., et al.: The ASP system DLV: advancements and applications. KI 32(2–3), 177–179 (2018)Google Scholar
  2. 2.
    Adrian, W.T., Manna, M., Leone, N., Amendola, G., Adrian, M.: Entity set expansion from the web via ASP. In: ICLP (Technical Communications). OASICS, vol. 58, pp. 1:1–1:5. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)Google Scholar
  3. 3.
    Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991)Google Scholar
  4. 4.
    Alviano, M., Amendola, G., Peñaloza, R.: Minimal undefinedness for fuzzy answer sets. In: AAAI 2017, pp. 3694–3700 (2017)Google Scholar
  5. 5.
    Amendola, G.: Dealing with incoherence in ASP: split semi-equilibrium semantics. In: DWAI@AI*IA. CEUR Workshop Proceedings, vol. 1334, pp. 23–32 (2014)Google Scholar
  6. 6.
    Amendola, G.: Preliminary results on modeling interdependent scheduling games via answer set programming. In: RiCeRcA@AI*IA. CEUR Workshop Proceedings, vol. 2272. CEUR-WS.org (2018)Google Scholar
  7. 7.
    Amendola, G.: Solving the stable roommates problem using incoherent answer set programs. In: RiCeRcA@AI*IA. CEUR Workshop Proceedings, vol. 2272 (2018)Google Scholar
  8. 8.
    Amendola, G.: Towards quantified answer set programming. In: RCRA@FLoC. CEUR Workshop Proceedings, vol. 2271. CEUR-WS.org (2018)Google Scholar
  9. 9.
    Amendola, G., Dodaro, C., Faber, W., Leone, N., Ricca, F.: On the computation of paracoherent answer sets. In: AAAI, pp. 1034–1040 (2017)Google Scholar
  10. 10.
    Amendola, G., Dodaro, C., Faber, W., Ricca, F.: Externally supported models for efficient computation of paracoherent answer sets. In: AAAI 2018, pp. 1034–1040 (2018)Google Scholar
  11. 11.
    Amendola, G., Dodaro, C., Leone, N., Ricca, F.: On the application of answer set programming to the conference paper assignment problem. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 164–178. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49130-1_13CrossRefGoogle Scholar
  12. 12.
    Amendola, G., Dodaro, C., Ricca, F.: ASPQ: an ASP-based 2QBF solver. In: QBF@SAT. CEUR Workshop Proceedings, vol. 1719, pp. 49–54 (2016)Google Scholar
  13. 13.
    Amendola, G., Eiter, T., Fink, M., Leone, N., Moura, J.: Semi-equilibrium models for paracoherent answer set programs. Artif. Intell. 234, 219–271 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Amendola, G., Eiter, T., Leone, N.: Modular paracoherent answer sets. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 457–471. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11558-0_32CrossRefGoogle Scholar
  15. 15.
    Amendola, G., Greco, G., Leone, N., Veltri, P.: Modeling and reasoning about NTU games via answer set programming. In: IJCAI 2016, pp. 38–45 (2016)Google Scholar
  16. 16.
    Amendola, G., Ricca, F., Truszczynski, M.: Generating hard random Boolean formulas and disjunctive logic programs. In: IJCAI, pp. 532–538 (2017)Google Scholar
  17. 17.
    Amendola, G., Ricca, F., Truszczynski, M.: A generator of hard 2QBF formulas and ASP programs. In: KR. AAAI Press (2018)Google Scholar
  18. 18.
    Amendola, G., Ricca, F., Truszczynski, M.: Random models of very hard 2QBF and disjunctive programs: an overview. In: ICTCS. CEUR Workshop Proceedings, CEUR-WS.org (2018)Google Scholar
  19. 19.
    Balduccini, M.: Learning and using domain-specific heuristics in ASP solvers. AICOM 24(2), 147–164 (2011)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Bonatti, P., Calimeri, F., Leone, N., Ricca, F.: Answer set programming. In: Dovier, A., Pontelli, E. (eds.) A 25-Year Perspective on Logic Programming. LNCS, vol. 6125, pp. 159–182. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14309-0_8CrossRefzbMATHGoogle Scholar
  21. 21.
    Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  22. 22.
    Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints. IEEE Trans. Knowl. Data Eng. 12(5), 845–860 (2000)CrossRefGoogle Scholar
  23. 23.
    Di Rosa, E., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with preferences. Constraints 15(4), 485–515 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Erdem, E., Öztok, U.: Generating explanations for biomedical queries. TPLP 15(1), 35–78 (2015).  https://doi.org/10.1017/S1471068413000598MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Garro, A., Palopoli, L., Ricca, F.: Exploiting agents in e-learning and skills management context. AI Commun. 19(2), 137–154 (2006)MathSciNetGoogle Scholar
  26. 26.
    Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F., Schaub, T.: Evaluation techniques and systems for answer set programming: a survey. In: IJCAI, pp. 5450–5456 (2018)Google Scholar
  27. 27.
    Gebser, M., Maratea, M., Ricca, F.: The sixth answer set programming competition. J. Artif. Intell. Res. 60, 41–95 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3/4), 365–386 (1991)CrossRefGoogle Scholar
  29. 29.
    Grasso, G., Iiritano, S., Leone, N., Lio, V., Ricca, F., Scalise, F.: An ASP-based system for team-building in the gioia-tauro seaport. In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 40–42. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11503-5_5CrossRefGoogle Scholar
  30. 30.
    Grasso, G., Iiritano, S., Leone, N., Ricca, F.: Some DLV applications for knowledge management. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI), vol. 5753, pp. 591–597. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04238-6_63CrossRefGoogle Scholar
  31. 31.
    Hoos, H., Kaminski, R., Schaub, T., Schneider, M.T.: ASPeed: ASP-based solver scheduling. In: Technical Communications of ICLP 2012. LIPIcs, vol. 17, pp. 176–187 (2012)Google Scholar
  32. 32.
    Hoos, H., Lindauer, M.T., Schaub, T.: Claspfolio 2: advances in algorithm selection for answer set programming. TPLP 14(4–5), 569–585 (2014)zbMATHGoogle Scholar
  33. 33.
    Lierler, Y., Maratea, M., Ricca, F.: Systems, engineering environments, and competitions. AI Mag. 37(3), 45–52 (2016)CrossRefGoogle Scholar
  34. 34.
    Manna, M., Ricca, F., Terracina, G.: Consistent query answering via ASP from different perspectives: theory and practice. TPLP 13(2), 227–252 (2013)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Manna, M., Ricca, F., Terracina, G.: Taming primary key violations to query large inconsistent data via ASP. TPLP 15(4–5), 696–710 (2015)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Maratea, M., Pulina, L., Ricca, F.: Applying machine learning techniques to ASP solving. In: Technical Communications of ICLP 2012. LIPIcs, vol. 17, pp. 37–48 (2012)Google Scholar
  37. 37.
    Maratea, M., Pulina, L., Ricca, F.: A multi-engine approach to answer-set programming. TPLP 14(6), 841–868 (2014)MathSciNetGoogle Scholar
  38. 38.
    Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-back techniques and heuristics in DLV: implementation, evaluation, and comparison to QBF solvers. J. Algorithms 63(1–3), 70–89 (2008)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)CrossRefGoogle Scholar
  40. 40.
    Sakama, C., Inoue, K.: Paraconsistent stable semantics for extended disjunctive programs. J. Log. Comput. 5(3), 265–285 (1995)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artif. Intell. 138(1–2), 181–234 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of CalabriaRendeItaly
  2. 2.University of GenoaGenoaItaly
  3. 3.University of KlagenfurtKlagenfurtAustria
  4. 4.University of SassariSassariItaly

Personalised recommendations