Privacy-Preserving Ontology Publishing for \(\mathcal {EL} \) Instance Stores

  • Franz Baader
  • Francesco Kriegel
  • Adrian NuradiansyahEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11468)


We make a first step towards adapting an existing approach for privacy-preserving publishing of linked data to Description Logic (DL) ontologies. We consider the case where both the knowledge about individuals and the privacy policies are expressed using concepts of the DL \(\mathcal {EL} \), which corresponds to the setting where the ontology is an \(\mathcal {EL} \) instance store. We introduce the notions of compliance of a concept with a policy and of safety of a concept for a policy, and show how optimal compliant (safe) generalizations of a given \(\mathcal {EL}\) concept can be computed. In addition, we investigate the complexity of the optimality problem.


  1. 1.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL}\) envelope. In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, IJCAI 2005, Edinburgh, UK. Morgan-Kaufmann Publishers (2005)Google Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, New York (2003)zbMATHGoogle Scholar
  3. 3.
    Baader, F., Kriegel, F., Nuradiansyah, A.: Privacy-preserving ontology publishing for \(\cal{EL}\) instance stores (extended version). LTCS-Report 19–01, Chair of Automata Theory, Institute of Theoretical Computer Science, TU Dresden, Dresden, Germany (2019).
  4. 4.
    Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Making repairs in description logics more gentle. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth International Conference, KR 2018, Tempe, Arizona, 30 October–2 November 2018, pp. 319–328 (2018)Google Scholar
  5. 5.
    Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in description logics with existential restrictions. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 96–101 (1999)Google Scholar
  6. 6.
    Baader, F., Morawska, B.: Unification in the description logic \(\cal{EL}\). Logical Methods Comput. Sci. 6(3), 31 p. (2010)Google Scholar
  7. 7.
    Baader, F., Nuradiansyah, A.: Towards privacy-preserving ontology publishing. In: Ortiz, M., Schneider, T. (eds.) Proceedings of the 31st International Workshop on Description Logics (DL 2018). CEUR Workshop Proceedings (2018)Google Scholar
  8. 8.
    Bonatti, P.A.: Fast compliance checking in an OWL2 fragment. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI 2018), pp. 1746–1752. (2018)Google Scholar
  9. 9.
    Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and—what else? In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004), pp. 298–302 (2004)Google Scholar
  10. 10.
    Cuenca Grau, B., Kostylev, E.V.: Logical foundations of privacy-preserving publishing of linked data. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona, USA, 12–17 February 2016, pp. 943–949 (2016)Google Scholar
  11. 11.
    Eiter, T., Gottlob, G.: Hypergraph transversal computation and related problems in logic and AI. In: Flesca, S., Greco, S., Ianni, G., Leone, N. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 549–564. Springer, Heidelberg (2002). Scholar
  12. 12.
    Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. 42(4), 14:1–14:53 (2010)CrossRefGoogle Scholar
  14. 14.
    Gottlob, G., Malizia, E.: Achieving new upper bounds for the hypergraph duality problem through logic. SIAM J. Comput. 47(2), 456–492 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The instance store: DL reasoning with large numbers of individuals. In: Proceedings of the 2004 International Workshop on Description Logics (DL 2004), Whistler, British Columbia, Canada, 6–8 June 2004 (2004)Google Scholar
  16. 16.
    Kriegel, F.: The distributive, graded lattice of \(\cal{EL}\) concept descriptions and its neighborhood relation (extended version). LTCS-Report 18–10, Chair of Automata Theory, Institute of Theoretical Computer Science, TU Dresden, Dresden, Germany (2018).
  17. 17.
    Küsters, R.: Non-standard Inferences in Description Logics. Lecture Notes in Artificial Intelligence, vol. 2100. Springer, Heidelberg (2001). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Theoretical Computer ScienceTU DresdenDresdenGermany

Personalised recommendations