Advertisement

SLD-Resolution Reduction of Second-Order Horn Fragments

  • Sophie TourretEmail author
  • Andrew Cropper
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11468)

Abstract

We present the derivation reduction problem for SLD-resolution, the undecidable problem of finding a finite subset of a set of clauses from which the whole set can be derived using SLD-resolution. We study the reducibility of various fragments of second-order Horn logic with particular applications in Inductive Logic Programming. We also discuss how these results extend to standard resolution.

Notes

Acknowledgements

The authors thank Katsumi Inoue and Stephen Muggleton for discussions on this work.

References

  1. 1.
    Albarghouthi, A., Koutris, P., Naik, M., Smith, C.: Constraint-based synthesis of datalog programs. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 689–706. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66158-2_44CrossRefGoogle Scholar
  2. 2.
    Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017)CrossRefGoogle Scholar
  3. 3.
    Balcázar, J.L.: Redundancy, deduction schemes, and minimum-size bases for association rules. Log. Methods Comput. Sci. 6(2), 1–33 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bienvenu, M.: Prime implicates and prime implicants in modal logic. In: Proceedings of the National Conference on Artificial Intelligence, vol. 22, p. 379. AAAI Press/MIT Press, Menlo Park/Cambridge (2007)Google Scholar
  5. 5.
    Buntine, W.: Generalized subsumption and its applications to induction and redundancy. Artif. Intell. 36(2), 149–176 (1988).  https://doi.org/10.1016/0004-3702(88)90001-XMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Campero, A., Pareja, A., Klinger, T., Tenenbaum, J., Riedel, S.: Logical rule induction and theory learning using neural theorem proving. ArXiv e-prints, September 2018Google Scholar
  7. 7.
    Charalambidis, A., Handjopoulos, K., Rondogiannis, P., Wadge, W.W.: Extensional higher-order logic programming. ACM Trans. Comput. Log. 14(3), 21:1–21:40 (2013).  https://doi.org/10.1145/2499937.2499942MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cropper, A.: Efficiently learning efficient programs. Ph.D. thesis, Imperial College London, UK (2017)Google Scholar
  9. 9.
    Cropper, A., Muggleton, S.H.: Logical minimisation of meta-rules within meta-interpretive learning. In: Davis, J., Ramon, J. (eds.) ILP 2014. LNCS (LNAI), vol. 9046, pp. 62–75. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23708-4_5CrossRefGoogle Scholar
  10. 10.
    Cropper, A., Muggleton, S.H.: Learning higher-order logic programs through abstraction and invention. In: Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, 9–15 July 2016, New York, pp. 1418–1424. IJCAI/AAAI Press (2016)Google Scholar
  11. 11.
    Cropper, A., Muggleton, S.H.: Metagol system (2016). https://github.com/metagol/metagol
  12. 12.
    Cropper, A., Tourret, S.: Derivation reduction of metarules in meta-interpretive learning. In: Proceedings of Inductive Logic Programming - 28th International Conference, ILP 2018, 2–4 September 2018, Ferrara, Italy, pp. 1–21 (2018).  https://doi.org/10.1007/978-3-319-99960-9_1Google Scholar
  13. 13.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001).  https://doi.org/10.1145/502807.502810CrossRefGoogle Scholar
  14. 14.
    Echenim, M., Peltier, N., Tourret, S.: Quantifier-free equational logic and prime implicate generation. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 311–325. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21401-6_21CrossRefGoogle Scholar
  15. 15.
    Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. J. Artif. Intell. Res. 61, 1–64 (2018).  https://doi.org/10.1613/jair.5714MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gottlob, G., Fermüller, C.G.: Removing redundancy from a clause. Artif. Intell. 61(2), 263–289 (1993)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Grädel, E.: The expressive power of second order Horn logic. In: Choffrut, C., Jantzen, M. (eds.) STACS 1991. LNCS, vol. 480, pp. 466–477. Springer, Heidelberg (1991).  https://doi.org/10.1007/BFb0020821CrossRefGoogle Scholar
  18. 18.
    Hemaspaandra, E., Schnoor, H.: Minimization for generalized Boolean formulas. In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol. 22, p. 566 (2011)Google Scholar
  19. 19.
    Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for SAT and QSAT. J. Artif. Intell. Res. 53, 127–168 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hillenbrand, T., Piskac, R., Waldmann, U., Weidenbach, C.: From search to computation: redundancy criteria and simplification at work. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 169–193. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37651-1_7CrossRefGoogle Scholar
  21. 21.
    Hohenecker, P., Lukasiewicz, T.: Deep learning for ontology reasoning. CoRR abs/1705.10342 (2017)Google Scholar
  22. 22.
    Huet, G.P.: A mechanization of type theory. In: Proceedings of the 3rd International Joint Conference on Artificial Intelligence, pp. 139–146 (1973)Google Scholar
  23. 23.
    Immerman, N.: Descriptive Complexity. Springer, New York (2012).  https://doi.org/10.1007/978-1-4612-0539-5CrossRefzbMATHGoogle Scholar
  24. 24.
    Joyner Jr., W.H.: Resolution strategies as decision procedures. J. ACM 23(3), 398–417 (1976).  https://doi.org/10.1145/321958.321960MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kaminski, T., Eiter, T., Inoue, K.: Exploiting answer set programming with external sources for meta-interpretive learning. In: 34th International Conference on Logic Programming (2018)Google Scholar
  26. 26.
    Kowalski, R.A.: Predicate logic as programming language. In: IFIP Congress, pp. 569–574 (1974)Google Scholar
  27. 27.
    Langlois, M., Mubayi, D., Sloan, R.H., Turán, G.: Combinatorial problems for Horn clauses. In: Lipshteyn, M., Levit, V.E., McConnell, R.M. (eds.) Graph Theory, Computational Intelligence and Thought. LNCS, vol. 5420, pp. 54–65. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02029-2_6CrossRefGoogle Scholar
  28. 28.
    Liberatore, P.: Redundancy in logic I: CNF propositional formulae. Artif. Intell. 163(2), 203–232 (2005).  https://doi.org/10.1016/j.artint.2004.11.002MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Liberatore, P.: Redundancy in logic II: 2CNF and Horn propositional formulae. Artif. Intell. 172(2–3), 265–299 (2008).  https://doi.org/10.1016/j.artint.2007.06.003MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lloyd, J.: Logic for Learning. COGTECH. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-662-08406-9CrossRefzbMATHGoogle Scholar
  31. 31.
    Marquis, P.: Consequence finding algorithms. In: Kohlas, J., Moral, S. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, pp. 41–145. Springer, Dordrecht (2000).  https://doi.org/10.1007/978-94-017-1737-3CrossRefGoogle Scholar
  32. 32.
    McCarthy, J.: Making robots conscious of their mental states. In: Machine Intelligence 15, Intelligent Agents, July 1995, pp. 3–17. St. Catherine’s College, Oxford (1995)Google Scholar
  33. 33.
    Muggleton, S.: Inductive logic programming. New Gener. Comput. 8(4), 295–318 (1991)CrossRefGoogle Scholar
  34. 34.
    Muggleton, S.: Inverse entailment and Progol. New Gener. Comput. 13, 245–286 (1995)CrossRefGoogle Scholar
  35. 35.
    Muggleton, S., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100(1), 49–73 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Muggleton, S., et al.: ILP turns 20 - biography and future challenges. Mach. Learn. 86(1), 3–23 (2012).  https://doi.org/10.1007/s10994-011-5259-2MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Nienhuys-Cheng, S.H., De Wolf, R.: Foundations of Inductive Logic Programming. Springer, New York (1997).  https://doi.org/10.1007/3-540-62927-0CrossRefzbMATHGoogle Scholar
  38. 38.
    Plotkin, G.: Automatic methods of inductive inference. Ph.D. thesis, Edinburgh University, August 1971Google Scholar
  39. 39.
    Raedt, L.D.: Declarative modeling for machine learning and data mining. In: Proceedings of Algorithmic Learning Theory - 23rd International Conference, ALT, p. 12 (2012).  https://doi.org/10.1007/978-3-642-34106-9_2Google Scholar
  40. 40.
    Raedt, L.D., Bruynooghe, M.: Interactive concept-learning and constructive induction by analogy. Mach. Learn. 8, 107–150 (1992).  https://doi.org/10.1007/BF00992861CrossRefzbMATHGoogle Scholar
  41. 41.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965).  https://doi.org/10.1145/321250.321253MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Rocktäschel, T., Riedel, S.: End-to-end differentiable proving. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, pp. 3791–3803 (2017)Google Scholar
  43. 43.
    Sato, T.: Equivalence-preserving first-order unfold/fold transformation systems. Theor. Comput. Sci. 105(1), 57–84 (1992).  https://doi.org/10.1016/0304-3975(92)90287-PMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Si, X., Lee, W., Zhang, R., Albarghouthi, A., Koutris, P., Naik, M.: Syntax-guided synthesis of datalog programs. In: Leavens, G.T., Garcia, A., Pasareanu, C.S. (eds.) Proceedings of the 2018 ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, pp. 515–527. ACM (2018).  https://doi.org/10.1145/3236024.3236034
  45. 45.
    Tärnlund, S.: Horn clause computability. BIT 17(2), 215–226 (1977)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Tourret, S., Cropper, A.: SLD-resolution reduction of second-order Horn fragments. Technical report (2018). https://arxiv.org/abs/1902.09900
  47. 47.
    Wang, W.Y., Mazaitis, K., Cohen, W.W.: Structure learning via parameter learning. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 1199–1208. ACM (2014)Google Scholar
  48. 48.
    Weidenbach, C., Wischnewski, P.: Subterm contextual rewriting. AI Commun. 23(2–3), 97–109 (2010).  https://doi.org/10.3233/AIC-2010-0459MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Max Planck Institute for Informatics, Saarland Informatics CampusSaarbrückenGermany
  2. 2.University of OxfordOxfordUK

Personalised recommendations