Advertisement

Disruption of the Blood-Brain Barrier During Neuroinflammatory and Neuroinfectious Diseases

  • Hamid Salimi
  • Robyn S. KleinEmail author
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

As the organ of highest metabolic demand, utilizing over 25% of total body glucose utilization via an enormous vasculature with one capillary every 73 μm, the brain evolves a barrier at the capillary and postcapillary venules to prevent toxicity during serum fluctuations in metabolites and hormones, to limit brain swelling during inflammation, and to prevent pathogen invasion. Understanding of neuroprotective barriers has since evolved to incorporate the neurovascular unit (NVU), the blood-cerebrospinal fluid (CSF) barrier, and the presence of CNS lymphatics that allow leukocyte egress. Identification of the cellular and molecular participants in BBB function at the NVU has allowed detailed analyses of mechanisms that contribute to BBB dysfunction in various disease states, which include both autoimmune and infectious etiologies. This chapter will introduce some of the cellular and molecular components that promote barrier function but may be manipulated by inflammatory mediators or pathogens during neuroinflammation or neuroinfectious diseases.

Keywords

Blood-brain barrier Neuroinfectious diseases Tight junctions Innate immunity Central nervous system 

Abbreviations

AJ

Adherens junction

ANG-1

Angiopoietin-1

APC

Antigen-presenting cell

AQP4

Aquaporin 4

BBB

Blood-brain barrier

bFGF

Basic fibroblast growth factor

BMEC

Brain microvascular endothelial cell

Cav-1

Caveolin-1

CBF

Cerebral blood flow

CHIKV

Chikungunya virus

CNS

Central nervous system

CSF

Cerebrospinal fluid

CSPG

Chondroitin sulfate proteoglycan

CTL

Cytotoxic T cell

DP1

Prostaglandin D2 receptor 1

dsRNA

Double-stranded ribonucleic acid

EC

Endothelial cell

ECM

Experimental cerebral malaria

ECM

Extracellular matrix

ERK

Extracellular signal-regulated protein kinase

ET

Edema toxin

gd-MRI

Gadolinium MRI

GDNF

Glial cell line-derived neurotrophic factor

HiV

Hendra virus

HIV-1

Human immunodeficiency virus type 1

HSV

Herpes simplex virus

ICAM-1

Intercellular adhesion molecule 1

IFN

Interferon

IFNAR

Type I IFN receptor

IL

Interleukin

iRBC

Infected RBC

JEV

Japanese encephalitis virus

LCMV

Lymphocytic choriomeningitis virus

MAPK

Mitogen-activated protein kinase

MAV-1

Mouse adenovirus type-1

MAVS

Mitochondrial antiviral-signaling protein

MDA5

Melanoma differentiation factor 5

MerTK

Tyrosine-protein kinase Mer

Mfsd2a

Major facilitator superfamily domain-containing protein 2a

MHV

Mouse hepatitis virus

MMP

Matrix metalloproteinase

MRI

Magnetic resonance imaging

MS

Multiple sclerosis

Msp

Meningococcal serine protease

NADPH

Nicotinamide adenine dinucleotide phosphate

NiV

Nipah virus

NLR

Nucleotide oligomerization domain-like receptor

NMOSD

Neuromyelitis optica spectrum disorder

NVU

Neurovascular unit

OPN

Osteopontin

PAFR

Platelet-activating factor receptor

PDGF-BB

Platelet-derived growth factor BB

PDGFRβ

Platelet-derived growth factor receptor β

PECAM-1

Platelet-associated cell adhesion molecule 1

PG

Proteoglycan

PGD2

Prostaglandin D2

PI3K

Phosphatidylinositol 3 kinase

pIgR

Polymeric immunoglobulin receptor

PKB

Protein kinase B

PLC

Phospholipase C

PPMS

Primary progressive multiple sclerosis

PRR

Pattern recognition receptor

RABV

Rabies virus

Rac-1

Ras-related C3 botulinum toxin substrate

RBC

Red blood cell

RhoA

Ras homolog gene family, member A

RLR

Retinoic acid-inducible gene 1 like receptor

ROS

Reactive oxygen species

RRMS

Recovery and remission multiple sclerosis

S1P

Sphingosine-1-phosphate

SAS

Subarachnoid space

sCD40L

Soluble CD40L

SHH

Sonic hedgehog

SPMS

Secondary-progressive multiple sclerosis

ssRNA

Single-stranded ribonucleic acid

TBEV

Tick-borne encephalitic virus

TEER

Transendothelial electrical resistance

TIMP

Endogenous tissue inhibitor of MMP

TJ

Tight junction

TLR

Toll-like receptor

TMEV

Theiler’s murine encephalitis virus

TNFα

Tumor necrosis factor alpha

VCAM-1

Vascular cell adhesion molecule 1

VEEV

Venezuelan equine encephalitis virus

VEGF

Vascular endothelial growth factor

VSV

Vesicular stomatitis virus

WNV

West Nile virus

References

  1. 1.
    Battelli F, Stern L. Die Oxydationsfermente. Ergeb Physiol. 1912;12:96–268.CrossRefGoogle Scholar
  2. 2.
    Barker RA, Widner H. Immune problems in central nervous system cell therapy. NeuroRx. 2004;1(4):472–81.  https://doi.org/10.1602/neurorx.1.4.472. PubMed PMID: 15717048; PubMed Central PMCID: PMCPMC534953.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Medawar PB. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol. 1948;29(1):58–69. PubMed PMID: 18865105; PubMed Central PMCID: PMCPMC2073079.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Wilson EH, Weninger W, Hunter CA. Trafficking of immune cells in the central nervous system. J Clin Invest. 2010;120(5):1368–79.  https://doi.org/10.1172/JCI41911. PubMed PMID: 20440079; PubMed Central PMCID: PMCPMC2860945.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G. Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol. 2018;135(3):311–36.  https://doi.org/10.1007/s00401-018-1815-1. PubMed PMID: 29411111.CrossRefPubMedGoogle Scholar
  6. 6.
    Gottschall PE, Howell MD. ADAMTS expression and function in central nervous system injury and disorders. Matrix Biol. 2015;44–46:70–6.  https://doi.org/10.1016/j.matbio.2015.01.014. PubMed PMID: 25622912; PubMed Central PMCID: PMCPMC5068130.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Laguri C, Arenzana-Seisdedos F, Lortat-Jacob H. Relationships between glycosaminoglycan and receptor binding sites in chemokines-the CXCL12 example. Carbohydr Res. 2008;343(12):2018–23.  https://doi.org/10.1016/j.carres.2008.01.047. PubMed PMID: 18334249.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang X, Wang B, Li JP. Implications of heparan sulfate and heparanase in neuroinflammation. Matrix Biol. 2014;35:174–81.  https://doi.org/10.1016/j.matbio.2013.12.009. PubMed PMID: 24398134.CrossRefPubMedGoogle Scholar
  9. 9.
    Komarova YA, Kruse K, Mehta D, Malik AB. Protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability. Circ Res. 2017;120(1):179–206.  https://doi.org/10.1161/CIRCRESAHA.116.306534. PubMed PMID: 28057793; PubMed Central PMCID: PMCPMC5225667.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ramos CJ, Antonetti DA. The role of small GTPases and EPAC-Rap signaling in the regulation of the blood-brain and blood-retinal barriers. Tissue Barriers. 2017;5(3):e1339768.  https://doi.org/10.1080/21688370.2017.1339768. PubMed PMID: 28632993; PubMed Central PMCID: PMCPMC5571780.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 2009;335(1):75–96.  https://doi.org/10.1007/s00441-008-0658-9. PubMed PMID: 18633647.CrossRefGoogle Scholar
  12. 12.
    Liu L, Brown D, McKee M, Lebrasseur NK, Yang D, Albrecht KH, et al. Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab. 2008;8(4):310–7.  https://doi.org/10.1016/j.cmet.2008.07.008. PubMed PMID: 18840361; PubMed Central PMCID: PMCPMC2581738.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Echarri A, Del Pozo MA. Caveolae – mechanosensitive membrane invaginations linked to actin filaments. J Cell Sci. 2015;128(15):2747–58.  https://doi.org/10.1242/jcs.153940. PubMed PMID: 26159735.CrossRefPubMedGoogle Scholar
  14. 14.
    Razani B, Lisanti MP. Caveolin-deficient mice: insights into caveolar function human disease. J Clin Invest. 2001;108(11):1553–61.  https://doi.org/10.1172/JCI14611. PubMed PMID: 11733547; PubMed Central PMCID: PMCPMC201001.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Daniels BP, Holman DW, Cruz-Orengo L, Jujjavarapu H, Durrant DM, Klein RS. Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals. MBio. 2014;5(5):e01476–14.  https://doi.org/10.1128/mBio.01476-14. PubMed PMID: 25161189; PubMed Central PMCID: PMCPMC4173776.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Baruch K, Schwartz M. CNS-specific T cells shape brain function via the choroid plexus. Brain Behav Immun. 2013;34:11–6.  https://doi.org/10.1016/j.bbi.2013.04.002. PubMed PMID: 23597431.CrossRefPubMedGoogle Scholar
  17. 17.
    Brynskikh A, Warren T, Zhu J, Kipnis J. Adaptive immunity affects learning behavior in mice. Brain Behav Immun. 2008;22(6):861–9.  https://doi.org/10.1016/j.bbi.2007.12.008. PubMed PMID: 18249087.CrossRefPubMedGoogle Scholar
  18. 18.
    Derecki NC, Cardani AN, Yang CH, Quinnies KM, Crihfield A, Lynch KR, et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J Exp Med. 2010;207(5):1067–80.  https://doi.org/10.1084/jem.20091419. PubMed PMID: 20439540; PubMed Central PMCID: PMCPMC2867291.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Derecki NC, Quinnies KM, Kipnis J. Alternatively activated myeloid (M2) cells enhance cognitive function in immune compromised mice. Brain Behav Immun. 2011;25(3):379–85.  https://doi.org/10.1016/j.bbi.2010.11.009. PubMed PMID: 21093578; PubMed Central PMCID: PMCPMC3039052.CrossRefPubMedGoogle Scholar
  20. 20.
    Kipnis J. Multifaceted interactions between adaptive immunity and the central nervous system. Science. 2016;353(6301):766–71.  https://doi.org/10.1126/science.aag2638. PubMed PMID: 27540163; PubMed Central PMCID: PMCPMC5590839.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kipnis J, Cohen H, Cardon M, Ziv Y, Schwartz M. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci U S A. 2004;101(21):8180–5.  https://doi.org/10.1073/pnas.0402268101. PubMed PMID: 15141078; PubMed Central PMCID: PMCPMC419577.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Radjavi A, Smirnov I, Derecki N, Kipnis J. Dynamics of the meningeal CD4(+) T-cell repertoire are defined by the cervical lymph nodes and facilitate cognitive task performance in mice. Mol Psychiatry. 2014;19(5):531–3.  https://doi.org/10.1038/mp.2013.79. PubMed PMID: 23752249; PubMed Central PMCID: PMCPMC3773254.CrossRefPubMedGoogle Scholar
  23. 23.
    Engelhardt B, Carare RO, Bechmann I, Flugel A, Laman JD, Weller RO. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol. 2016;132:317.  https://doi.org/10.1007/s00401-016-1606-5. PubMed PMID: 27522506.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41.  https://doi.org/10.1038/nature14432. PubMed PMID: 26030524; PubMed Central PMCID: PMCPMC4506234.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212(7):991–9.  https://doi.org/10.1084/jem.20142290. PubMed PMID: 26077718; PubMed Central PMCID: PMCPMC4493418.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014;11:10.  https://doi.org/10.1186/2045-8118-11-10. PubMed PMID: 24817998; PubMed Central PMCID: PMCPMC4016637.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    McCandless EE, Wang Q, Woerner BM, Harper JM, Klein RS. CXCL12 limits inflammation by localizing mononuclear infiltrates to the perivascular space during experimental autoimmune encephalomyelitis. J Immunol. 2006;177(11):8053–64. PubMed PMID: 17114479.CrossRefGoogle Scholar
  28. 28.
    McCandless EE, Zhang B, Diamond MS, Klein RS. CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis. Proc Natl Acad Sci U S A. 2008;105(32):11270–5.  https://doi.org/10.1073/pnas.0800898105. PubMed PMID: 18678898; PubMed Central PMCID: PMCPMC2495012.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Durrant DM, Daniels BP, Klein RS. IL-1R1 signaling regulates CXCL12-mediated T cell localization and fate within the central nervous system during West Nile Virus encephalitis. J Immunol. 2014;193(8):4095–106.  https://doi.org/10.4049/jimmunol.1401192. PubMed PMID: 25200953; PubMed Central PMCID: PMCPMC4340598.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Okada T, Ngo VN, Ekland EH, Forster R, Lipp M, Littman DR, et al. Chemokine requirements for B cell entry to lymph nodes and Peyer’s patches. J Exp Med. 2002;196(1):65–75. PubMed PMID: 12093871; PubMed Central PMCID: PMCPMC2194009.CrossRefGoogle Scholar
  31. 31.
    Cruz-Orengo L, Holman DW, Dorsey D, Zhou L, Zhang P, Wright M, et al. CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J Exp Med. 2011;208(2):327–39.  https://doi.org/10.1084/jem.20102010. PubMed PMID: 21300915; PubMed Central PMCID: PMCPMC3039853.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–6.  https://doi.org/10.1038/nature09513. PubMed PMID: 20944625; PubMed Central PMCID: PMCPMC3241506.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nikolakopoulou AM, Zhao Z, Montagne A, Zlokovic BV. Regional early and progressive loss of brain pericytes but not vascular smooth muscle cells in adult mice with disrupted platelet-derived growth factor receptor-beta signaling. PLoS One. 2017;12(4):e0176225.  https://doi.org/10.1371/journal.pone.0176225. PubMed PMID: 28441414; PubMed Central PMCID: PMCPMC5404855.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Maragakis NJ, Rothstein JD. Mechanisms of Disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol. 2006;2(12):679–89.  https://doi.org/10.1038/ncpneuro0355. PubMed PMID: 17117171.CrossRefPubMedGoogle Scholar
  35. 35.
    Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci. 2003;6(1):43–50.  https://doi.org/10.1038/nn980. PubMed PMID: 12469126.CrossRefPubMedGoogle Scholar
  36. 36.
    Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.  https://doi.org/10.1038/nrn1824. PubMed PMID: 16371949.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Nag S. Morphology and properties of astrocytes. Methods Mol Biol. 2011;686:69–100.  https://doi.org/10.1007/978-1-60761-938-3_3. PubMed PMID: 21082367.CrossRefPubMedGoogle Scholar
  38. 38.
    Theis M, Sohl G, Eiberger J, Willecke K. Emerging complexities in identity and function of glial connexins. Trends Neurosci. 2005;28(4):188–95.  https://doi.org/10.1016/j.tins.2005.02.006. PubMed PMID: 15808353.CrossRefPubMedGoogle Scholar
  39. 39.
    Alvarez JI, Katayama T, Prat A. Glial influence on the blood brain barrier. Glia. 2013;61(12):1939–58.  https://doi.org/10.1002/glia.22575. PubMed PMID: 24123158; PubMed Central PMCID: PMCPMC4068281.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, et al. SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med. 2003;9(7):900–6.  https://doi.org/10.1038/nm889. PubMed PMID: 12808449.CrossRefPubMedGoogle Scholar
  41. 41.
    Cabezas R, Avila M, Gonzalez J, El-Bacha RS, Baez E, Garcia-Segura LM, et al. Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci. 2014;8:211.  https://doi.org/10.3389/fncel.2014.00211. PubMed PMID: 25136294; PubMed Central PMCID: PMCPMC4120694.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Balda MS, Gonzalez-Mariscal L, Contreras RG, Macias-Silva M, Torres-Marquez ME, Garcia-Sainz JA, et al. Assembly and sealing of tight junctions: possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J Membr Biol. 1991;122(3):193–202. PubMed PMID: 1920385.CrossRefGoogle Scholar
  43. 43.
    Matter K, Balda MS. Signalling to and from tight junctions. Nat Rev Mol Cell Biol. 2003;4(3):225–36.  https://doi.org/10.1038/nrm1055. PubMed PMID: 12612641.CrossRefPubMedGoogle Scholar
  44. 44.
    Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13.  https://doi.org/10.1016/j.nbd.2003.12.016. PubMed PMID: 15207256.CrossRefPubMedGoogle Scholar
  45. 45.
    Andreeva AY, Piontek J, Blasig IE, Utepbergenov DI. Assembly of tight junction is regulated by the antagonism of conventional and novel protein kinase C isoforms. Int J Biochem Cell Biol. 2006;38(2):222–33.  https://doi.org/10.1016/j.biocel.2005.09.001. PubMed PMID: 16257565.CrossRefPubMedGoogle Scholar
  46. 46.
    Borisow N, Mori M, Kuwabara S, Scheel M, Paul F. Diagnosis and treatment of NMO spectrum disorder and MOG-encephalomyelitis. Front Neurol. 2018;9:888.  https://doi.org/10.3389/fneur.2018.00888. PubMed PMID: 30405519; PubMed Central PMCID: PMCPMC6206299.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kessler RA, Mealy MA, Jimenez-Arango JA, Quan C, Paul F, Lopez R, et al. Anti-aquaporin-4 titer is not predictive of disease course in neuromyelitis optica spectrum disorder: a multicenter cohort study. Mult Scler Relat Disord. 2017;17:198–201.  https://doi.org/10.1016/j.msard.2017.08.005. PubMed PMID: 29055457.CrossRefPubMedGoogle Scholar
  48. 48.
    Wang Y, Zhu M, Liu C, Han J, Lang W, Gao Y, et al. Blood brain barrier permeability could be a biomarker to predict severity of neuromyelitis optica spectrum disorders: a retrospective analysis. Front Neurol. 2018;9:648.  https://doi.org/10.3389/fneur.2018.00648. PubMed PMID: 30131763; PubMed Central PMCID: PMCPMC6090143.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Saikali P, Cayrol R, Vincent T. Anti-aquaporin-4 auto-antibodies orchestrate the pathogenesis in neuromyelitis optica. Autoimmun Rev. 2009;9(2):132–5.  https://doi.org/10.1016/j.autrev.2009.04.004. PubMed PMID: 19389490.CrossRefPubMedGoogle Scholar
  50. 50.
    Papadopoulos MC, Bennett JL, Verkman AS. Treatment of neuromyelitis optica: state-of-the-art and emerging therapies. Nat Rev Neurol. 2014;10(9):493–506.  https://doi.org/10.1038/nrneurol.2014.141. PubMed PMID: 25112508; PubMed Central PMCID: PMCPMC4229040.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Asgari N, Berg CT, Morch MT, Khorooshi R, Owens T. Cerebrospinal fluid aquaporin-4-immunoglobulin G disrupts blood brain barrier. Ann Clin Transl Neurol. 2015;2(8):857–63.  https://doi.org/10.1002/acn3.221. PubMed PMID: 26339679; PubMed Central PMCID: PMCPMC4554446.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Shimizu F, Sano Y, Takahashi T, Haruki H, Saito K, Koga M, et al. Sera from neuromyelitis optica patients disrupt the blood-brain barrier. J Neurol Neurosurg Psychiatry. 2012;83(3):288–97.  https://doi.org/10.1136/jnnp-2011-300434. PubMed PMID: 22100760.CrossRefPubMedGoogle Scholar
  53. 53.
    Tomizawa Y, Yokoyama K, Saiki S, Takahashi T, Matsuoka J, Hattori N. Blood-brain barrier disruption is more severe in neuromyelitis optica than in multiple sclerosis and correlates with clinical disability. J Int Med Res. 2012;40(4):1483–91.  https://doi.org/10.1177/147323001204000427. PubMed PMID: 22971500.CrossRefPubMedGoogle Scholar
  54. 54.
    Vincent T, Saikali P, Cayrol R, Roth AD, Bar-Or A, Prat A, et al. Functional consequences of neuromyelitis optica-IgG astrocyte interactions on blood-brain barrier permeability and granulocyte recruitment. J Immunol. 2008;181(8):5730–7. PubMed PMID: 18832732.CrossRefGoogle Scholar
  55. 55.
    Hosokawa T, Nakajima H, Doi Y, Sugino M, Kimura F, Hanafusa T, et al. Increased serum matrix metalloproteinase-9 in neuromyelitis optica: implication of disruption of blood-brain barrier. J Neuroimmunol. 2011;236(1–2):81–6.  https://doi.org/10.1016/j.jneuroim.2011.04.009. PubMed PMID: 21621856.CrossRefPubMedGoogle Scholar
  56. 56.
    Spencer JI, Bell JS, DeLuca GC. Vascular pathology in multiple sclerosis: reframing pathogenesis around the blood-brain barrier. J Neurol Neurosurg Psychiatry. 2018;89(1):42–52.  https://doi.org/10.1136/jnnp-2017-316011. PubMed PMID: 28860328.CrossRefPubMedGoogle Scholar
  57. 57.
    Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, et al. Multiple sclerosis. Nat Rev Dis Primers. 2018;4(1):43.  https://doi.org/10.1038/s41572-018-0041-4. PubMed PMID: 30410033.CrossRefPubMedGoogle Scholar
  58. 58.
    Lassmann H. Multiple sclerosis pathology. Cold Spring Harb Perspect Med. 2018;8(3).  https://doi.org/10.1101/cshperspect.a028936. PubMed PMID: 29358320.CrossRefGoogle Scholar
  59. 59.
    Claudio L, Raine CS, Brosnan CF. Evidence of persistent blood-brain barrier abnormalities in chronic-progressive multiple sclerosis. Acta Neuropathol. 1995;90(3):228–38. PubMed PMID: 8525795.CrossRefGoogle Scholar
  60. 60.
    Uchida Y, Sumiya T, Tachikawa M, Yamakawa T, Murata S, Yagi Y, et al. Involvement of claudin-11 in disruption of blood-brain, -spinal cord, and -arachnoid barriers in multiple sclerosis. Mol Neurobiol. 2018;56:2039.  https://doi.org/10.1007/s12035-018-1207-5. PubMed PMID: 29984400.CrossRefPubMedGoogle Scholar
  61. 61.
    Cruz-Orengo L, Daniels BP, Dorsey D, Basak SA, Grajales-Reyes JG, McCandless EE, et al. Enhanced sphingosine-1-phosphate receptor 2 expression underlies female CNS autoimmunity susceptibility. J Clin Invest. 2014;124(6):2571–84.  https://doi.org/10.1172/JCI73408. PubMed PMID: 24812668; PubMed Central PMCID: PMCPMC4089451.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Motyl J, Strosznajder JB. Sphingosine kinase 1/sphingosine-1-phosphate receptors dependent signalling in neurodegenerative diseases. The promising target for neuroprotection in Parkinson’s disease. Pharmacol Rep. 2018;70(5):1010–4.  https://doi.org/10.1016/j.pharep.2018.05.002. PubMed PMID: 30138818.CrossRefPubMedGoogle Scholar
  63. 63.
    Tsai HC, Han MH. Sphingosine-1-Phosphate (S1P) and S1P signaling pathway: therapeutic targets in autoimmunity and inflammation. Drugs. 2016;76(11):1067–79.  https://doi.org/10.1007/s40265-016-0603-2. PubMed PMID: 27318702.CrossRefPubMedGoogle Scholar
  64. 64.
    Healy LM, Antel JP. Sphingosine-1-Phosphate receptors in the central nervous and immune systems. Curr Drug Targets. 2016;17(16):1841–50. PubMed PMID: 26424391.CrossRefGoogle Scholar
  65. 65.
    McCandless EE, Piccio L, Woerner BM, Schmidt RE, Rubin JB, Cross AH, et al. Pathological expression of CXCL12 at the blood-brain barrier correlates with severity of multiple sclerosis. Am J Pathol. 2008;172(3):799–808.  https://doi.org/10.2353/ajpath.2008.070918. PubMed PMID: 18276777; PubMed Central PMCID: PMCPMC2258272.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    McGinley AM, Edwards SC, Raverdeau M, Mills KHG. Th17cells, gammadelta T cells and their interplay in EAE and multiple sclerosis. J Autoimmun. 2018.  https://doi.org/10.1016/j.jaut.2018.01.001. PubMed PMID: 29395738.CrossRefGoogle Scholar
  67. 67.
    McCandless EE, Budde M, Lees JR, Dorsey D, Lyng E, Klein RS. IL-1R signaling within the central nervous system regulates CXCL12 expression at the blood-brain barrier and disease severity during experimental autoimmune encephalomyelitis. J Immunol. 2009;183(1):613–20.  https://doi.org/10.4049/jimmunol.0802258. PubMed PMID: 19535637; PubMed Central PMCID: PMCPMC2892701.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Champagne E. gammadelta T cell receptor ligands and modes of antigen recognition. Arch Immunol Ther Exp. 2011;59(2):117–37.  https://doi.org/10.1007/s00005-011-0118-1. PubMed PMID: 21298486; PubMed Central PMCID: PMCPMC3317888.CrossRefGoogle Scholar
  69. 69.
    Axtell RC, de Jong BA, Boniface K, van der Voort LF, Bhat R, De Sarno P, et al. T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med. 2010;16(4):406–12.  https://doi.org/10.1038/nm.2110. PubMed PMID: 20348925; PubMed Central PMCID: PMCPMC3042885.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Toplak N, Blazina S, Avcin T. The role of IL-1 inhibition in systemic juvenile idiopathic arthritis: current status and future perspectives. Drug Des Devel Ther. 2018;12:1633–43.  https://doi.org/10.2147/DDDT.S114532. PubMed PMID: 29922038; PubMed Central PMCID: PMCPMC5996857.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kim BS, Park YJ, Chung Y. Targeting IL-17 in autoimmunity and inflammation. Arch Pharm Res. 2016;39(11):1537–47.  https://doi.org/10.1007/s12272-016-0823-8. PubMed PMID: 27576555.CrossRefPubMedGoogle Scholar
  72. 72.
    Hanes MS, Salanga CL, Chowdry AB, Comerford I, McColl SR, Kufareva I, et al. Dual targeting of the chemokine receptors CXCR4 and ACKR3 with novel engineered chemokines. J Biol Chem. 2015;290(37):22385–97.  https://doi.org/10.1074/jbc.M115.675108. PubMed PMID: 26216880; PubMed Central PMCID: PMCPMC4566214.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    van Horssen J, Brink BP, de Vries HE, van der Valk P, Bo L. The blood-brain barrier in cortical multiple sclerosis lesions. J Neuropathol Exp Neurol. 2007;66(4):321–8.  https://doi.org/10.1097/nen.0b013e318040b2de. PubMed PMID: 17413323.CrossRefPubMedGoogle Scholar
  74. 74.
    Akaishi T, Takahashi T, Nakashima I. Oligoclonal bands and periventricular lesions in multiple sclerosis will not increase blood-brain barrier permeability. J Neurol Sci. 2018;387:129–33.  https://doi.org/10.1016/j.jns.2018.02.020. PubMed PMID: 29571849.CrossRefPubMedGoogle Scholar
  75. 75.
    Lee NJ, Ha SK, Sati P, Absinta M, Luciano NJ, Lefeuvre JA, et al. Spatiotemporal distribution of fibrinogen in marmoset and human inflammatory demyelination. Brain. 2018;141(6):1637–49.  https://doi.org/10.1093/brain/awy082. PubMed PMID: 29688408; PubMed Central PMCID: PMCPMC5972667.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Lucas MJ, Brouwer MC, van de Beek D. Neurological sequelae of bacterial meningitis. J Infect. 2016;73(1):18–27.  https://doi.org/10.1016/j.jinf.2016.04.009. PubMed PMID: 27105658.CrossRefPubMedGoogle Scholar
  77. 77.
    Neal JW, Gasque P. How does the brain limit the severity of inflammation and tissue injury during bacterial meningitis? J Neuropathol Exp Neurol. 2013;72(5):370–85.  https://doi.org/10.1097/NEN.0b013e3182909f2f. PubMed PMID: 23584204.CrossRefPubMedGoogle Scholar
  78. 78.
    Iovino F, Engelen-Lee JY, Brouwer M, van de Beek D, van der Ende A, Valls Seron M, et al. pIgR and PECAM-1 bind to pneumococcal adhesins RrgA and PspC mediating bacterial brain invasion. J Exp Med. 2017;214(6):1619–30.  https://doi.org/10.1084/jem.20161668. PubMed PMID: 28515075; PubMed Central PMCID: PMCPMC5461002.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Barichello T, dos Santos I, Savi GD, Simoes LR, Silvestre T, Comim CM, et al. TNF-alpha, IL-1beta, IL-6, and cinc-1 levels in rat brain after meningitis induced by Streptococcus pneumoniae. J Neuroimmunol. 2010;221(1–2):42–5.  https://doi.org/10.1016/j.jneuroim.2010.02.009. PubMed PMID: 20202693.CrossRefPubMedGoogle Scholar
  80. 80.
    Barichello T, Generoso JS, Silvestre C, Costa CS, Carrodore MM, Cipriano AL, et al. Circulating concentrations, cerebral output of the CINC-1 and blood-brain barrier disruption in Wistar rats after pneumococcal meningitis induction. Eur J Clin Microbiol Infect Dis. 2012;31(8):2005–9.  https://doi.org/10.1007/s10096-011-1533-2. PubMed PMID: 22302624.CrossRefPubMedGoogle Scholar
  81. 81.
    Storz C, Schutz C, Tluway A, Matuja W, Schmutzhard E, Winkler AS. Clinical findings and management of patients with meningitis with an emphasis on Haemophilus influenzae meningitis in rural Tanzania. J Neurol Sci. 2016;366:52–8.  https://doi.org/10.1016/j.jns.2016.04.044. PubMed PMID: 27288776.CrossRefPubMedGoogle Scholar
  82. 82.
    Zysk G, Schneider-Wald BK, Hwang JH, Bejo L, Kim KS, Mitchell TJ, et al. Pneumolysin is the main inducer of cytotoxicity to brain microvascular endothelial cells caused by Streptococcus pneumoniae. Infect Immun. 2001;69(2):845–52.  https://doi.org/10.1128/IAI.69.2.845-852.2001. PubMed PMID: 11159977; PubMed Central PMCID: PMCPMC97961.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Coureuil M, Lecuyer H, Bourdoulous S, Nassif X. A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat Rev Microbiol. 2017;15(3):149–59.  https://doi.org/10.1038/nrmicro.2016.178. PubMed PMID: 28090076.CrossRefPubMedGoogle Scholar
  84. 84.
    Drevets DA, Dillon MJ, Schawang JS, Van Rooijen N, Ehrchen J, Sunderkotter C, et al. The Ly-6Chigh monocyte subpopulation transports Listeria monocytogenes into the brain during systemic infection of mice. J Immunol. 2004;172(7):4418–24. PubMed PMID: 15034057.CrossRefGoogle Scholar
  85. 85.
    Drevets DA, Leenen PJ, Greenfield RA. Invasion of the central nervous system by intracellular bacteria. Clin Microbiol Rev. 2004;17(2):323–47. PubMed PMID: 15084504; PubMed Central PMCID: PMCPMC387409.CrossRefGoogle Scholar
  86. 86.
    Grundler T, Quednau N, Stump C, Orian-Rousseau V, Ishikawa H, Wolburg H, et al. The surface proteins InlA and InlB are interdependently required for polar basolateral invasion by Listeria monocytogenes in a human model of the blood-cerebrospinal fluid barrier. Microbes Infect. 2013;15(4):291–301.  https://doi.org/10.1016/j.micinf.2012.12.005. PubMed PMID: 23376167.CrossRefPubMedGoogle Scholar
  87. 87.
    Kayal S, Lilienbaum A, Join-Lambert O, Li X, Israel A, Berche P. Listeriolysin O secreted by Listeria monocytogenes induces NF-kappaB signalling by activating the IkappaB kinase complex. Mol Microbiol. 2002;44(5):1407–19. PubMed PMID: 12028384.CrossRefGoogle Scholar
  88. 88.
    Bartt R. Listeria and atypical presentations of Listeria in the central nervous system. Semin Neurol. 2000;20(3):361–73.  https://doi.org/10.1055/s-2000-9398. PubMed PMID: 11051300.CrossRefPubMedGoogle Scholar
  89. 89.
    Inglesby TV, O’Toole T, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, et al. Anthrax as a biological weapon, 2002: updated recommendations for management. JAMA. 2002;287(17):2236–52. PubMed PMID: 11980524.CrossRefGoogle Scholar
  90. 90.
    Ramarao N, Lereclus D. The InhA1 metalloprotease allows spores of the B. cereus group to escape macrophages. Cell Microbiol. 2005;7(9):1357–64.  https://doi.org/10.1111/j.1462-5822.2005.00562.x. PubMed PMID: 16098222.CrossRefPubMedGoogle Scholar
  91. 91.
    Ebrahimi CM, Kern JW, Sheen TR, Ebrahimi-Fardooee MA, van Sorge NM, Schneewind O, et al. Penetration of the blood-brain barrier by Bacillus anthracis requires the pXO1-encoded BslA protein. J Bacteriol. 2009;191(23):7165–73.  https://doi.org/10.1128/JB.00903-09. PubMed PMID: 19820089; PubMed Central PMCID: PMCPMC2786561.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Kern J, Schneewind O. BslA, the S-layer adhesin of B. anthracis, is a virulence factor for anthrax pathogenesis. Mol Microbiol. 2010;75(2):324–32.  https://doi.org/10.1111/j.1365-2958.2009.06958.x. PubMed PMID: 19906175; PubMed Central PMCID: PMCPMC2828814.CrossRefPubMedGoogle Scholar
  93. 93.
    Moayeri M, Leppla SH, Vrentas C, Pomerantsev AP, Liu S. Anthrax pathogenesis. Annu Rev Microbiol. 2015;69:185–208.  https://doi.org/10.1146/annurev-micro-091014-104523. PubMed PMID: 26195305.CrossRefPubMedGoogle Scholar
  94. 94.
    Scheifele D. Hib conjugate vaccines: lessons learned. Int J Clin Pract Suppl. 2001;(118):8–9. PubMed PMID: 11715364.Google Scholar
  95. 95.
    Al-Obaidi MMJ, Desa MNM. Mechanisms of blood brain barrier disruption by different types of bacteria, and bacterial-host interactions facilitate the bacterial pathogen invading the brain. Cell Mol Neurobiol. 2018;38(7):1349–68.  https://doi.org/10.1007/s10571-018-0609-2. PubMed PMID: 30117097.CrossRefPubMedGoogle Scholar
  96. 96.
    Orihuela CJ, Mahdavi J, Thornton J, Mann B, Wooldridge KG, Abouseada N, et al. Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J Clin Invest. 2009;119(6):1638–46.  https://doi.org/10.1172/JCI36759. PubMed PMID: 19436113; PubMed Central PMCID: PMCPMC2689107.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Saez-Llorens X, Jafari HS, Severien C, Parras F, Olsen KD, Hansen EJ, et al. Enhanced attenuation of meningeal inflammation and brain edema by concomitant administration of anti-CD18 monoclonal antibodies and dexamethasone in experimental Haemophilus meningitis. J Clin Invest. 1991;88(6):2003–11.  https://doi.org/10.1172/JCI115527. PubMed PMID: 1684364; PubMed Central PMCID: PMCPMC295788.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Roos KL. Acute bacterial meningitis. Semin Neurol. 2000;20(3):293–306.  https://doi.org/10.1055/s-2000-9393. PubMed PMID: 11051294.CrossRefPubMedGoogle Scholar
  99. 99.
    Oordt-Speets AM, Bolijn R, van Hoorn RC, Bhavsar A, Kyaw MH. Global etiology of bacterial meningitis: a systematic review and meta-analysis. PLoS One. 2018;13(6):e0198772.  https://doi.org/10.1371/journal.pone.0198772. PubMed PMID: 29889859; PubMed Central PMCID: PMCPMC5995389 performed under contract by Pallas Health Research and Consultancy, Rotterdam, The Netherlands. AMO, RB, and RCH are employees of Pallas Health Research and Consultancy, Rotterdam, The Netherlands. AB and MHK are employees of Sanofi-Pasteur. This does not alter our adherence to PLOS ONE policies on sharing data and materials.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Sa ECC, Griffiths NJ, Murillo I, Virji M. Neisseria meningitidis Opc invasin binds to the cytoskeletal protein alpha-actinin. Cell Microbiol. 2009;11(3):389–405.  https://doi.org/10.1111/j.1462-5822.2008.01262.x. PubMed PMID: 19016781; PubMed Central PMCID: PMCPMC2688670.CrossRefGoogle Scholar
  101. 101.
    Virji M. Pathogenic neisseriae: surface modulation, pathogenesis and infection control. Nat Rev Microbiol. 2009;7(4):274–86.  https://doi.org/10.1038/nrmicro2097. PubMed PMID: 19287450.CrossRefPubMedGoogle Scholar
  102. 102.
    Cain MD, Salimi H, Gong Y, Yang L, Hamilton SL, Heffernan JR, et al. Virus entry and replication in the brain precedes blood-brain barrier disruption during intranasal alphavirus infection. J Neuroimmunol. 2017;308:118–30.  https://doi.org/10.1016/j.jneuroim.2017.04.008. PubMed PMID: 28501330; PubMed Central PMCID: PMCPMC5694394.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Li F, Wang Y, Yu L, Cao S, Wang K, Yuan J, et al. Viral infection of the central nervous system and neuroinflammation precede blood-brain barrier disruption during Japanese encephalitis virus infection. J Virol. 2015;89(10):5602–14.  https://doi.org/10.1128/JVI.00143-15. PubMed PMID: 25762733; PubMed Central PMCID: PMCPMC4442524.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Roe K, Kumar M, Lum S, Orillo B, Nerurkar VR, West VS. Nile virus-induced disruption of the blood-brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases. J Gen Virol. 2012;93(Pt 6):1193–203.  https://doi.org/10.1099/vir.0.040899-0. PubMed PMID: 22398316; PubMed Central PMCID: PMCPMC3755517.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Schafer A, Brooke CB, Whitmore AC, Johnston RE. The role of the blood-brain barrier during Venezuelan equine encephalitis virus infection. J Virol. 2011;85(20):10682–90.  https://doi.org/10.1128/JVI.05032-11. PubMed PMID: 21849461; PubMed Central PMCID: PMCPMC3187510.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Salimi H, Cain MD, Klein RS. Encephalitic arboviruses: emergence, clinical presentation, and neuropathogenesis. Neurotherapeutics. 2016;13(3):514–34.  https://doi.org/10.1007/s13311-016-0443-5. PubMed PMID: 27220616; PubMed Central PMCID: PMCPMC4965410.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Gralinski LE, Ashley SL, Dixon SD, Spindler KR. Mouse adenovirus type 1-induced breakdown of the blood-brain barrier. J Virol. 2009;83(18):9398–410.  https://doi.org/10.1128/JVI.00954-09. PubMed PMID: 19570856; PubMed Central PMCID: PMCPMC2738240.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Kajon AE, Brown CC, Spindler KR. Distribution of mouse adenovirus type 1 in intraperitoneally and intranasally infected adult outbred mice. J Virol. 1998;72(2):1219–23. PubMed PMID: 9445021; PubMed Central PMCID: PMCPMC124599.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Wang K, Wang H, Lou W, Ma L, Li Y, Zhang N, et al. IP-10 promotes blood-brain barrier damage by inducing tumor necrosis factor alpha production in Japanese encephalitis. Front Immunol. 2018;9:1148.  https://doi.org/10.3389/fimmu.2018.01148. PubMed PMID: 29910805; PubMed Central PMCID: PMCPMC5992377.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Dallasta LM, Pisarov LA, Esplen JE, Werley JV, Moses AV, Nelson JA, et al. Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am J Pathol. 1999;155(6):1915–27.  https://doi.org/10.1016/S0002-9440(10)65511-3. PubMed PMID: 10595922; PubMed Central PMCID: PMCPMC1866950.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Bleau C, Filliol A, Samson M, Lamontagne L. Brain invasion by mouse hepatitis virus depends on impairment of tight junctions and beta interferon production in brain microvascular endothelial cells. J Virol. 2015;89(19):9896–908.  https://doi.org/10.1128/JVI.01501-15. PubMed PMID: 26202229; PubMed Central PMCID: PMCPMC4577898.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Song HY, Ju SM, Seo WY, Goh AR, Lee JK, Bae YS, et al. Nox2-based NADPH oxidase mediates HIV-1 Tat-induced up-regulation of VCAM-1/ICAM-1 and subsequent monocyte adhesion in human astrocytes. Free Radic Biol Med. 2011;50(5):576–84.  https://doi.org/10.1016/j.freeradbiomed.2010.12.019. PubMed PMID: 21172429.CrossRefPubMedGoogle Scholar
  113. 113.
    Keck F, Brooks-Faulconer T, Lark T, Ravishankar P, Bailey C, Salvador-Morales C, et al. Altered mitochondrial dynamics as a consequence of Venezuelan Equine encephalitis virus infection. Virulence. 2017;8(8):1849–66.  https://doi.org/10.1080/21505594.2016.1276690. PubMed PMID: 28075229; PubMed Central PMCID: PMCPMC5810500.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Masanetz S, Lehmann MH. HIV-1 Nef increases astrocyte sensitivity towards exogenous hydrogen peroxide. Virol J. 2011;8:35.  https://doi.org/10.1186/1743-422X-8-35. PubMed PMID: 21255447; PubMed Central PMCID: PMCPMC3038946.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Louboutin JP, Agrawal L, Reyes BA, Van Bockstaele EJ, Strayer DS. HIV-1 gp120-induced injury to the blood-brain barrier: role of metalloproteinases 2 and 9 and relationship to oxidative stress. J Neuropathol Exp Neurol. 2010;69(8):801–16.  https://doi.org/10.1097/NEN.0b013e3181e8c96f. PubMed PMID: 20613638; PubMed Central PMCID: PMCPMC4707960.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Thangaraj A, Periyasamy P, Liao K, Bendi VS, Callen S, Pendyala G, et al. HIV-1 TAT-mediated microglial activation: role of mitochondrial dysfunction and defective mitophagy. Autophagy. 2018;14(9):1596–619.  https://doi.org/10.1080/15548627.2018.1476810. PubMed PMID: 29966509; PubMed Central PMCID: PMCPMC6135576.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Wang T, Campbell RV, Yi MK, Lemon SM, Weinman SA. Role of Hepatitis C virus core protein in viral-induced mitochondrial dysfunction. J Viral Hepat. 2010;17(11):784–93.  https://doi.org/10.1111/j.1365-2893.2009.01238.x. PubMed PMID: 20002299; PubMed Central PMCID: PMCPMC2970657.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Wang P, Dai J, Bai F, Kong KF, Wong SJ, Montgomery RR, et al. Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain. J Virol. 2008;82(18):8978–85.  https://doi.org/10.1128/JVI.00314-08. PubMed PMID: 18632868; PubMed Central PMCID: PMCPMC2546894.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Ashley SL, Pretto CD, Stier MT, Kadiyala P, Castro-Jorge L, Hsu TH, et al. Matrix metalloproteinase activity in infections by an encephalitic virus, mouse adenovirus type 1. J Virol. 2017;91(6).  https://doi.org/10.1128/JVI.01412-16. PubMed PMID: 28053109; PubMed Central PMCID: PMCPMC5331797.
  120. 120.
    Chang CY, Li JR, Chen WY, Ou YC, Lai CY, Hu YH, et al. Disruption of in vitro endothelial barrier integrity by Japanese encephalitis virus-Infected astrocytes. Glia. 2015;63(11):1915–32.  https://doi.org/10.1002/glia.22857. PubMed PMID: 25959931.CrossRefPubMedGoogle Scholar
  121. 121.
    Loffek S, Schilling O, Franzke CW. Series “matrix metalloproteinases in lung health and disease”: biological role of matrix metalloproteinases: a critical balance. Eur Respir J. 2011;38(1):191–208.  https://doi.org/10.1183/09031936.00146510. PubMed PMID: 21177845.CrossRefPubMedGoogle Scholar
  122. 122.
    Xing Y, Shepherd N, Lan J, Li W, Rane S, Gupta SK, et al. MMPs/TIMPs imbalances in the peripheral blood and cerebrospinal fluid are associated with the pathogenesis of HIV-1-associated neurocognitive disorders. Brain Behav Immun. 2017;65:161–72.  https://doi.org/10.1016/j.bbi.2017.04.024. PubMed PMID: 28487203; PubMed Central PMCID: PMCPMC5793222.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Schafer A, Whitmore AC, Konopka JL, Johnston RE. Replicon particles of Venezuelan equine encephalitis virus as a reductionist murine model for encephalitis. J Virol. 2009;83(9):4275–86.  https://doi.org/10.1128/JVI.02383-08. PubMed PMID: 19225006; PubMed Central PMCID: PMCPMC2668494.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Andras IE, Pu H, Tian J, Deli MA, Nath A, Hennig B, et al. Signaling mechanisms of HIV-1 Tat-induced alterations of claudin-5 expression in brain endothelial cells. J Cereb Blood Flow Metab. 2005;25(9):1159–70.  https://doi.org/10.1038/sj.jcbfm.9600115. PubMed PMID: 15815581.CrossRefPubMedGoogle Scholar
  125. 125.
    Aghajanian A, Wittchen ES, Campbell SL, Burridge K. Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif. PLoS One. 2009;4(11):e8045.  https://doi.org/10.1371/journal.pone.0008045. PubMed PMID: 19956681; PubMed Central PMCID: PMCPMC2778012.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Harijith A, Ebenezer DL, Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol. 2014;5:352.  https://doi.org/10.3389/fphys.2014.00352. PubMed PMID: 25324778; PubMed Central PMCID: PMCPMC4179323.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Afonso PV, Ozden S, Cumont MC, Seilhean D, Cartier L, Rezaie P, et al. Alteration of blood-brain barrier integrity by retroviral infection. PLoS Pathog. 2008;4(11):e1000205.  https://doi.org/10.1371/journal.ppat.1000205. PubMed PMID: 19008946; PubMed Central PMCID: PMCPMC2575404.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Park BH, Lavi E, Blank KJ, Gaulton GN. Intracerebral hemorrhages and syncytium formation induced by endothelial cell infection with a murine leukemia virus. J Virol. 1993;67(10):6015–24. PubMed PMID: 8396666; PubMed Central PMCID: PMCPMC238022.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Erbar S, Maisner A. Nipah virus infection and glycoprotein targeting in endothelial cells. Virol J. 2010;7:305.  https://doi.org/10.1186/1743-422X-7-305. PubMed PMID: 21054904; PubMed Central PMCID: PMCPMC2991316.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Rockx B, Brining D, Kramer J, Callison J, Ebihara H, Mansfield K, et al. Clinical outcome of henipavirus infection in hamsters is determined by the route and dose of infection. J Virol. 2011;85(15):7658–71.  https://doi.org/10.1128/JVI.00473-11. PubMed PMID: 21593160; PubMed Central PMCID: PMCPMC3147900.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Wong KT, Robertson T, Ong BB, Chong JW, Yaiw KC, Wang LF, et al. Human Hendra virus infection causes acute and relapsing encephalitis. Neuropathol Appl Neurobiol. 2009;35(3):296–305.  https://doi.org/10.1111/j.1365-2990.2008.00991.x. PubMed PMID: 19473296.CrossRefPubMedGoogle Scholar
  132. 132.
    Al-Obaidi MMJ, Bahadoran A, Har LS, Mui WS, Rajarajeswaran J, Zandi K, et al. Japanese encephalitis virus disrupts blood-brain barrier and modulates apoptosis proteins in THBMEC cells. Virus Res. 2017;233:17–28.  https://doi.org/10.1016/j.virusres.2017.02.012. PubMed PMID: 28279803.CrossRefPubMedGoogle Scholar
  133. 133.
    Westendorp MO, Frank R, Ochsenbauer C, Stricker K, Dhein J, Walczak H, et al. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature. 1995;375(6531):497–500.  https://doi.org/10.1038/375497a0. PubMed PMID: 7539892.CrossRefPubMedGoogle Scholar
  134. 134.
    Pu H, Hayashi K, Andras IE, Eum SY, Hennig B, Toborek M. Limited role of COX-2 in HIV Tat-induced alterations of tight junction protein expression and disruption of the blood-brain barrier. Brain Res. 2007;1184:333–44.  https://doi.org/10.1016/j.brainres.2007.09.063. PubMed PMID: 17976544.CrossRefPubMedGoogle Scholar
  135. 135.
    Davidson DC, Hirschman MP, Sun A, Singh MV, Kasischke K, Maggirwar SB. Excess soluble CD40L contributes to blood brain barrier permeability in vivo: implications for HIV-associated neurocognitive disorders. PLoS One. 2012;7(12):e51793.  https://doi.org/10.1371/journal.pone.0051793. PubMed PMID: 23251626; PubMed Central PMCID: PMCPMC3520914.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Jones LD, Jackson JW, Maggirwar SB. Modeling HIV-1 induced neuroinflammation in mice: role of platelets in mediating blood-brain barrier dysfunction. PLoS One. 2016;11(3):e0151702.  https://doi.org/10.1371/journal.pone.0151702. PubMed PMID: 26986758; PubMed Central PMCID: PMCPMC4795798.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Corrales-Medina VF, Simkins J, Chirinos JA, Serpa JA, Horstman LL, Jy W, et al. Increased levels of platelet microparticles in HIV-infected patients with good response to highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2010;54(2):217–8.  https://doi.org/10.1097/QAI.0b013e3181c8f4c9. PubMed PMID: 20505474.CrossRefPubMedGoogle Scholar
  138. 138.
    Sui Z, Sniderhan LF, Schifitto G, Phipps RP, Gelbard HA, Dewhurst S, et al. Functional synergy between CD40 ligand and HIV-1 Tat contributes to inflammation: implications in HIV type 1 dementia. J Immunol. 2007;178(5):3226–36. PubMed PMID: 17312171.CrossRefGoogle Scholar
  139. 139.
    Vibin M, Siva Priya SG, NR B, Sasikala V, Sahasranamam V, Abraham A. Broccoli regulates protein alterations and cataractogenesis in selenite models. Curr Eye Res. 2010;35(2):99–107.  https://doi.org/10.3109/02713680903428991. PubMed PMID: 20136419.CrossRefPubMedGoogle Scholar
  140. 140.
    Carty M, Reinert L, Paludan SR, Bowie AG. Innate antiviral signalling in the central nervous system. Trends Immunol. 2014;35(2):79–87.  https://doi.org/10.1016/j.it.2013.10.012. PubMed PMID: 24316012.CrossRefPubMedGoogle Scholar
  141. 141.
    Errett JS, Suthar MS, McMillan A, Diamond MS, Gale M Jr. The essential, nonredundant roles of RIG-I and MDA5 in detecting and controlling West Nile virus infection. J Virol. 2013;87(21):11416–25.  https://doi.org/10.1128/JVI.01488-13. PubMed PMID: 23966395; PubMed Central PMCID: PMCPMC3807316.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Reinert LS, Harder L, Holm CK, Iversen MB, Horan KA, Dagnaes-Hansen F, et al. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. J Clin Invest. 2012;122(4):1368–76.  https://doi.org/10.1172/JCI60893. PubMed PMID: 22426207; PubMed Central PMCID: PMCPMC3314467.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Suthar MS, Ma DY, Thomas S, Lund JM, Zhang N, Daffis S, et al. IPS-1 is essential for the control of West Nile virus infection and immunity. PLoS Pathog. 2010;6(2):e1000757.  https://doi.org/10.1371/journal.ppat.1000757. PubMed PMID: 20140199; PubMed Central PMCID: PMCPMC2816698.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med. 2004;10(12):1366–73.  https://doi.org/10.1038/nm1140. PubMed PMID: 15558055.CrossRefPubMedGoogle Scholar
  145. 145.
    Daffis S, Samuel MA, Suthar MS, Gale M, Jr., Diamond MS. Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol 2008;82(21):10349–10358. doi:  https://doi.org/10.1128/JVI.00935-08. PubMed PMID: 18715906; PubMed Central PMCID: PMCPMC2573187.CrossRefGoogle Scholar
  146. 146.
    Menager P, Roux P, Megret F, Bourgeois JP, Le Sourd AM, Danckaert A, et al. Toll-like receptor 3 (TLR3) plays a major role in the formation of rabies virus Negri Bodies. PLoS Pathog. 2009;5(2):e1000315.  https://doi.org/10.1371/journal.ppat.1000315. PubMed PMID: 19247444; PubMed Central PMCID: PMCPMC2642728.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Ramos HJ, Lanteri MC, Blahnik G, Negash A, Suthar MS, Brassil MM, et al. IL-1beta signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLoS Pathog. 2012;8(11):e1003039.  https://doi.org/10.1371/journal.ppat.1003039. PubMed PMID: 23209411; PubMed Central PMCID: PMCPMC3510243.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Kaushik DK, Gupta M, Kumawat KL, Basu A. NLRP3 inflammasome: key mediator of neuroinflammation in murine Japanese encephalitis. PLoS One. 2012;7(2):e32270.  https://doi.org/10.1371/journal.pone.0032270. PubMed PMID: 22393394; PubMed Central PMCID: PMCPMC3290554.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Wang Y, Jin S, Sonobe Y, Cheng Y, Horiuchi H, Parajuli B, et al. Interleukin-1beta induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes. PLoS One. 2014;9(10):e110024.  https://doi.org/10.1371/journal.pone.0110024. PubMed PMID: 25313834; PubMed Central PMCID: PMCPMC4196962.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Marques CP, Hu S, Sheng W, Lokensgard JR. Microglial cells initiate vigorous yet non-protective immune responses during HSV-1 brain infection. Virus Res. 2006;121(1):1–10.  https://doi.org/10.1016/j.virusres.2006.03.009. PubMed PMID: 16621100.CrossRefPubMedGoogle Scholar
  151. 151.
    Sun J, Zheng JH, Zhao M, Lee S, Goldstein H. Increased in vivo activation of microglia and astrocytes in the brains of mice transgenic for an infectious R5 human immunodeficiency virus type 1 provirus and for CD4-specific expression of human cyclin T1 in response to stimulation by lipopolysaccharides. J Virol. 2008;82(11):5562–72.  https://doi.org/10.1128/JVI.02618-07. PubMed PMID: 18353948; PubMed Central PMCID: PMCPMC2395169.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Vasek MJ, Garber C, Dorsey D, Durrant DM, Bollman B, Soung A, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534(7608):538–43.  https://doi.org/10.1038/nature18283. PubMed PMID: 27337340.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, et al. The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci. 2014;8:362.  https://doi.org/10.3389/fncel.2014.00362. PubMed PMID: 25404894; PubMed Central PMCID: PMCPMC4217497.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Chhatbar C, Detje CN, Grabski E, Borst K, Spanier J, Ghita L, et al. Type I interferon receptor signaling of neurons and astrocytes regulates microglia activation during viral encephalitis. Cell Rep. 2018;25(1):118–29 e4.  https://doi.org/10.1016/j.celrep.2018.09.003. PubMed PMID: 30282022.CrossRefPubMedGoogle Scholar
  155. 155.
    Fekete R, Cserep C, Lenart N, Toth K, Orsolits B, Martinecz B, et al. Microglia control the spread of neurotropic virus infection via P2Y12 signalling and recruit monocytes through P2Y12-independent mechanisms. Acta Neuropathol. 2018;136(3):461–82.  https://doi.org/10.1007/s00401-018-1885-0. PubMed PMID: 30027450; PubMed Central PMCID: PMCPMC6096730.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Wheeler DL, Sariol A, Meyerholz DK, Perlman S. Microglia are required for protection against lethal coronavirus encephalitis in mice. J Clin Invest. 2018;128(3):931–43.  https://doi.org/10.1172/JCI97229. PubMed PMID: 29376888; PubMed Central PMCID: PMCPMC5824854.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Kallfass C, Ackerman A, Lienenklaus S, Weiss S, Heimrich B, Staeheli P. Visualizing production of beta interferon by astrocytes and microglia in brain of La Crosse virus-infected mice. J Virol. 2012;86(20):11223–30.  https://doi.org/10.1128/JVI.01093-12. PubMed PMID: 22875966; PubMed Central PMCID: PMCPMC3457137.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Pfefferkorn C, Kallfass C, Lienenklaus S, Spanier J, Kalinke U, Rieder M, et al. Abortively infected astrocytes appear to represent the main source of interferon beta in the virus-infected brain. J Virol. 2016;90(4):2031–8.  https://doi.org/10.1128/JVI.02979-15. PubMed PMID: 26656686; PubMed Central PMCID: PMCPMC4733997.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Hwang M, Bergmann CC. Alpha/beta interferon (IFN-alpha/beta) signaling in astrocytes mediates protection against viral encephalomyelitis and regulates IFN-gamma-dependent responses. J Virol. 2018;92(10)  https://doi.org/10.1128/JVI.01901-17. PubMed PMID: 29491163; PubMed Central PMCID: PMCPMC5923078.
  160. 160.
    Ye J, Jiang R, Cui M, Zhu B, Sun L, Wang Y, et al. Etanercept reduces neuroinflammation and lethality in mouse model of Japanese encephalitis. J Infect Dis. 2014;210(6):875–89.  https://doi.org/10.1093/infdis/jiu179. PubMed PMID: 24652493.CrossRefPubMedGoogle Scholar
  161. 161.
    Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277(1):61–75.  https://doi.org/10.1111/imr.12534. PubMed PMID: 28462526; PubMed Central PMCID: PMCPMC5416822.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Yogarajah T, Ong KC, Perera D, Wong KT. AIM2 inflammasome-mediated pyroptosis in enterovirus A71-infected neuronal cells restricts viral replication. Sci Rep. 2017;7(1):5845.  https://doi.org/10.1038/s41598-017-05589-2. PubMed PMID: 28724943; PubMed Central PMCID: PMCPMC5517550.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    de Sousa JR, Azevedo R, Martins Filho AJ, de Araujo MTF, Cruz E, Vasconcelos BCB, et al. In situ inflammasome activation results in severe damage to the central nervous system in fatal Zika virus microcephaly cases. Cytokine. 2018;111:255–64.  https://doi.org/10.1016/j.cyto.2018.08.008. PubMed PMID: 30199767.CrossRefPubMedGoogle Scholar
  164. 164.
    Vijay R, Fehr AR, Janowski AM, Athmer J, Wheeler DL, Grunewald M, et al. Virus-induced inflammasome activation is suppressed by prostaglandin D2/DP1 signaling. Proc Natl Acad Sci U S A. 2017;114(27):E5444–E53.  https://doi.org/10.1073/pnas.1704099114. PubMed PMID: 28630327; PubMed Central PMCID: PMCPMC5502630.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Bortell N, Flynn C, Conti B, Fox HS, Marcondes MCG. Osteopontin impacts West Nile virus pathogenesis and resistance by regulating inflammasome components and cell death in the central nervous system at early time points. Mediat Inflamm. 2017;2017:7582437.  https://doi.org/10.1155/2017/7582437. PubMed PMID: 28811681; PubMed Central PMCID: PMCPMC5547729.CrossRefGoogle Scholar
  166. 166.
    Guarda G, Braun M, Staehli F, Tardivel A, Mattmann C, Forster I, et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity. 2011;34(2):213–23.  https://doi.org/10.1016/j.immuni.2011.02.006. PubMed PMID: 21349431.CrossRefPubMedGoogle Scholar
  167. 167.
    Miner JJ, Daniels BP, Shrestha B, Proenca-Modena JL, Lew ED, Lazear HM, et al. The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity. Nat Med. 2015;21(12):1464–72.  https://doi.org/10.1038/nm.3974. PubMed PMID: 26523970; PubMed Central PMCID: PMCPMC4674389.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Gupta N, Rao PV. Transcriptomic profile of host response in Japanese encephalitis virus infection. Virol J. 2011;8:92.  https://doi.org/10.1186/1743-422X-8-92. PubMed PMID: 21371334; PubMed Central PMCID: PMCPMC3058095.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Sharma A, Bhomia M, Honnold SP, Maheshwari RK. Role of adhesion molecules and inflammation in Venezuelan equine encephalitis virus infected mouse brain. Virol J. 2011;8:197.  https://doi.org/10.1186/1743-422X-8-197. PubMed PMID: 21529366; PubMed Central PMCID: PMCPMC3113303.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Daniels BP, Jujjavarapu H, Durrant DM, Williams JL, Green RR, White JP, et al. Regionally distinct astrocyte interferon signaling promotes blood-brain barrier integrity and limits immunopathology during neurotropic viral infection. J Clin Invest. 2017 (in press).Google Scholar
  171. 171.
    Lai CY, Ou YC, Chang CY, Pan HC, Chang CJ, Liao SL, et al. Endothelial Japanese encephalitis virus infection enhances migration and adhesion of leukocytes to brain microvascular endothelia via MEK-dependent expression of ICAM1 and the CINC and RANTES chemokines. J Neurochem. 2012;123(2):250–61.  https://doi.org/10.1111/j.1471-4159.2012.07889.x. PubMed PMID: 22845610.CrossRefPubMedGoogle Scholar
  172. 172.
    Ruzek D, Salat J, Singh SK, Kopecky J. Breakdown of the blood-brain barrier during tick-borne encephalitis in mice is not dependent on CD8+ T-cells. PLoS One. 2011;6(5):e20472.  https://doi.org/10.1371/journal.pone.0020472. PubMed PMID: 21629771; PubMed Central PMCID: PMCPMC3100324.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Song M, Jin J, Lim JE, Kou J, Pattanayak A, Rehman JA, et al. TLR4 mutation reduces microglial activation, increases Abeta deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflammation. 2011;8:92.  https://doi.org/10.1186/1742-2094-8-92. PubMed PMID: 21827663; PubMed Central PMCID: PMCPMC3169468.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Song HY, Ryu J, Ju SM, Park LJ, Lee JA, Choi SY, et al. Extracellular HIV-1 Tat enhances monocyte adhesion by up-regulation of ICAM-1 and VCAM-1 gene expression via ROS-dependent NF-kappaB activation in astrocytes. Exp Mol Med. 2007;39(1):27–37.  https://doi.org/10.1038/emm.2007.4. PubMed PMID: 17334226.CrossRefPubMedGoogle Scholar
  175. 175.
    Phares TW, Kean RB, Mikheeva T, Hooper DC. Regional differences in blood-brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. J Immunol. 2006;176(12):7666–75. PubMed PMID: 16751414.CrossRefGoogle Scholar
  176. 176.
    Klein RS, Lin E, Zhang B, Luster AD, Tollett J, Samuel MA, et al. Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol. 2005;79(17):11457–66.  https://doi.org/10.1128/JVI.79.17.11457-11466.2005. PubMed PMID: 16103196; PubMed Central PMCID: PMCPMC1193600.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Michalowska-Wender G, Losy J, Szczucinski A, Biernacka-Lukanty J, Wender M. Effect of methylprednisolone treatment on expression of sPECAM-1 and CXCL10 chemokine in serum of MS patients. Pharmacol Rep. 2006;58(6):920–3. PubMed PMID: 17220550.PubMedGoogle Scholar
  178. 178.
    Song L, Pachter JS. Monocyte chemoattractant protein-1 alters expression of tight junction-associated proteins in brain microvascular endothelial cells. Microvasc Res. 2004;67(1):78–89. PubMed PMID: 14709405.CrossRefGoogle Scholar
  179. 179.
    Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, Van Rooijen N, et al. Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J Cereb Blood Flow Metab. 2005;25(5):593–606.  https://doi.org/10.1038/sj.jcbfm.9600055. PubMed PMID: 15689955.CrossRefPubMedGoogle Scholar
  180. 180.
    Moseman EA, McGavern DB. The great balancing act: regulation and fate of antiviral T-cell interactions. Immunol Rev. 2013;255(1):110–24.  https://doi.org/10.1111/imr.12093. PubMed PMID: 23947351; PubMed Central PMCID: PMCPMC3748617.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Kim JV, Kang SS, Dustin ML, McGavern DB. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature. 2009;457(7226):191–5.  https://doi.org/10.1038/nature07591. PubMed PMID: 19011611; PubMed Central PMCID: PMCPMC2702264.CrossRefGoogle Scholar
  182. 182.
    Chai Q, He WQ, Zhou M, Lu H, Fu ZF. Enhancement of blood-brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J Virol. 2014;88(9):4698–710.  https://doi.org/10.1128/JVI.03149-13. PubMed PMID: 24522913; PubMed Central PMCID: PMCPMC3993813.CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Phares TW, Fabis MJ, Brimer CM, Kean RB, Hooper DC. A peroxynitrite-dependent pathway is responsible for blood-brain barrier permeability changes during a central nervous system inflammatory response: TNF-alpha is neither necessary nor sufficient. J Immunol. 2007;178(11):7334–43. PubMed PMID: 17513784.CrossRefGoogle Scholar
  184. 184.
    Johnson HL, Jin F, Pirko I, Johnson AJ. Theiler’s murine encephalomyelitis virus as an experimental model system to study the mechanism of blood-brain barrier disruption. J Neurovirol. 2014;20(2):107–12.  https://doi.org/10.1007/s13365-013-0187-5. PubMed PMID: 23857332; PubMed Central PMCID: PMCPMC3894260.CrossRefPubMedGoogle Scholar
  185. 185.
    Suidan GL, Dickerson JW, Johnson HL, Chan TW, Pavelko KD, Pirko I, et al. Preserved vascular integrity and enhanced survival following neuropilin-1 inhibition in a mouse model of CD8 T cell-initiated CNS vascular permeability. J Neuroinflammation. 2012;9:218.  https://doi.org/10.1186/1742-2094-9-218. PubMed PMID: 22985494; PubMed Central PMCID: PMCPMC3489603.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Prakash MD, Munoz MA, Jain R, Tong PL, Koskinen A, Regner M, et al. Granzyme B promotes cytotoxic lymphocyte transmigration via basement membrane remodeling. Immunity. 2014;41(6):960–72.  https://doi.org/10.1016/j.immuni.2014.11.012. PubMed PMID: 25526309.CrossRefPubMedGoogle Scholar
  187. 187.
    Allingham MJ, van Buul JD, Burridge K. ICAM-1-mediated, Src- and Pyk2-dependent vascular endothelial cadherin tyrosine phosphorylation is required for leukocyte transendothelial migration. J Immunol. 2007;179(6):4053–64. PubMed PMID: 17785844.CrossRefGoogle Scholar
  188. 188.
    Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–67.  https://doi.org/10.1089/ars.2012.5149. PubMed PMID: 23991888; PubMed Central PMCID: PMCPMC3929010.CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Turowski P, Martinelli R, Crawford R, Wateridge D, Papageorgiou AP, Lampugnani MG, et al. Phosphorylation of vascular endothelial cadherin controls lymphocyte emigration. J Cell Sci. 2008;121(Pt 1):29–37.  https://doi.org/10.1242/jcs.022681. PubMed PMID: 18096689; PubMed Central PMCID: PMCPMC3810954.CrossRefPubMedGoogle Scholar
  190. 190.
    Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol. 2006;8(11):1223–34.  https://doi.org/10.1038/ncb1486. PubMed PMID: 17060906.CrossRefPubMedGoogle Scholar
  191. 191.
    Monaghan-Benson E, Burridge K. The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species. J Biol Chem. 2009;284(38):25602–11.  https://doi.org/10.1074/jbc.M109.009894. PubMed PMID: 19633358; PubMed Central PMCID: PMCPMC2757962.CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Konradt C, Ueno N, Christian DA, Delong JH, Pritchard GH, Herz J, et al. Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system. Nat Microbiol. 2016;1:16001.  https://doi.org/10.1038/nmicrobiol.2016.1. PubMed PMID: 27572166; PubMed Central PMCID: PMCPMC4966557.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Medana IM, Turner GD. Human cerebral malaria and the blood-brain barrier. Int J Parasitol. 2006;36(5):555–68.  https://doi.org/10.1016/j.ijpara.2006.02.004. PubMed PMID: 16616145.CrossRefPubMedGoogle Scholar
  194. 194.
    Brown H, Rogerson S, Taylor T, Tembo M, Mwenechanya J, Molyneux M, et al. Blood-brain barrier function in cerebral malaria in Malawian children. Am J Trop Med Hyg. 2001;64(3–4):207–13. PubMed PMID: 11442219.CrossRefGoogle Scholar
  195. 195.
    Hora R, Kapoor P, Thind KK, Mishra PC. Cerebral malaria – clinical manifestations and pathogenesis. Metab Brain Dis. 2016;31(2):225–37.  https://doi.org/10.1007/s11011-015-9787-5. PubMed PMID: 26746434.CrossRefPubMedGoogle Scholar
  196. 196.
    Zougbede S, Miller F, Ravassard P, Rebollo A, Ciceron L, Couraud PO, et al. Metabolic acidosis induced by Plasmodium falciparum intraerythrocytic stages alters blood-brain barrier integrity. J Cereb Blood Flow Metab. 2011;31(2):514–26.  https://doi.org/10.1038/jcbfm.2010.121. PubMed PMID: 20683453; PubMed Central PMCID: PMCPMC3049507.CrossRefPubMedGoogle Scholar
  197. 197.
    Pino P, Vouldoukis I, Dugas N, Hassani-Loppion G, Dugas B, Mazier D. Redox-dependent apoptosis in human endothelial cells after adhesion of Plasmodium falciparum-infected erythrocytes. Ann N Y Acad Sci. 2003;1010:582–6. PubMed PMID: 15033796.CrossRefGoogle Scholar
  198. 198.
    Nacer A, Movila A, Sohet F, Girgis NM, Gundra UM, Loke P, et al. Experimental cerebral malaria pathogenesis – hemodynamics at the blood brain barrier. PLoS Pathog. 2014;10(12):e1004528.  https://doi.org/10.1371/journal.ppat.1004528. PubMed PMID: 25474413; PubMed Central PMCID: PMCPMC4256476.CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Nacer A, Movila A, Baer K, Mikolajczak SA, Kappe SH, Frevert U. Neuroimmunological blood brain barrier opening in experimental cerebral malaria. PLoS Pathog. 2012;8(10):e1002982.  https://doi.org/10.1371/journal.ppat.1002982. PubMed PMID: 23133375; PubMed Central PMCID: PMCPMC3486917.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Machado FS, Desruisseaux MS, Nagajyothi, Kennan RP, Hetherington HP, Wittner M, et al. Endothelin in a murine model of cerebral malaria. Exp Biol Med (Maywood). 2006;231(6):1176–81. PubMed PMID: 16741072.Google Scholar
  201. 201.
    Dai M, Freeman B, Bruno FP, Shikani HJ, Tanowitz HB, Weiss LM, et al. The novel ETA receptor antagonist HJP-272 prevents cerebral microvascular hemorrhage in cerebral malaria and synergistically improves survival in combination with an artemisinin derivative. Life Sci. 2012;91(13–14):687–92.  https://doi.org/10.1016/j.lfs.2012.07.006. PubMed PMID: 22820174; PubMed Central PMCID: PMCPMC3523882.CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    de Souza JB, Hafalla JC, Riley EM, Couper KN. Cerebral malaria: why experimental murine models are required to understand the pathogenesis of disease. Parasitology. 2010;137(5):755–72.  https://doi.org/10.1017/S0031182009991715. PubMed PMID: 20028608.CrossRefPubMedGoogle Scholar
  203. 203.
    Li J, Chang WL, Sun G, Chen HL, Specian RD, Berney SM, et al. Intercellular adhesion molecule 1 is important for the development of severe experimental malaria but is not required for leukocyte adhesion in the brain. J Investig Med. 2003;51(3):128–40.  https://doi.org/10.1136/jim-51-03-15. PubMed PMID: 12769195.CrossRefPubMedGoogle Scholar
  204. 204.
    Howland SW, Poh CM, Renia L. Activated brain endothelial cells cross-present malaria antigen. PLoS Pathog. 2015;11(6):e1004963.  https://doi.org/10.1371/journal.ppat.1004963. PubMed PMID: 26046849; PubMed Central PMCID: PMCPMC4457820.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Haque A, Best SE, Unosson K, Amante FH, de Labastida F, Anstey NM, et al. Granzyme B expression by CD8+ T cells is required for the development of experimental cerebral malaria. J Immunol. 2011;186(11):6148–56.  https://doi.org/10.4049/jimmunol.1003955. PubMed PMID: 21525386.CrossRefPubMedGoogle Scholar
  206. 206.
    Huggins MA, Johnson HL, Jin F, N Songo A, Hanson LM, LaFrance SJ, et al. Perforin expression by CD8 T cells is sufficient to cause fatal brain edema during experimental cerebral malaria. Infect Immun. 2017;85(5)  https://doi.org/10.1128/IAI.00985-16. PubMed PMID: 28264905; PubMed Central PMCID: PMCPMC5400849.
  207. 207.
    Swanson PA, 2nd, Hart GT, Russo MV, Nayak D, Yazew T, Pena M, et al. CD8+ T cells induce fatal brainstem pathology during cerebral malaria via luminal antigen-specific engagement of brain vasculature. PLoS Pathog 2016;12(12):e1006022. doi:  https://doi.org/10.1371/journal.ppat.1006022. PubMed PMID: 27907215; PubMed Central PMCID: PMCPMC5131904.CrossRefGoogle Scholar
  208. 208.
    Van den Steen PE, Deroost K, Van Aelst I, Geurts N, Martens E, Struyf S, et al. CXCR3 determines strain susceptibility to murine cerebral malaria by mediating T lymphocyte migration toward IFN-gamma-induced chemokines. Eur J Immunol. 2008;38(4):1082–95.  https://doi.org/10.1002/eji.200737906. PubMed PMID: 18383042.CrossRefPubMedGoogle Scholar
  209. 209.
    Claser C, Malleret B, Gun SY, Wong AY, Chang ZW, Teo P, et al. CD8+ T cells and IFN-gamma mediate the time-dependent accumulation of infected red blood cells in deep organs during experimental cerebral malaria. PLoS One. 2011;6(4):e18720.  https://doi.org/10.1371/journal.pone.0018720. PubMed PMID: 21494565; PubMed Central PMCID: PMCPMC3073989.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Teo TH, Howland SW, Claser C, Gun SY, Poh CM, Lee WW, et al. Co-infection with Chikungunya virus alters trafficking of pathogenic CD8(+) T cells into the brain and prevents Plasmodium-induced neuropathology. EMBO Mol Med. 2018;10(1):121–38.  https://doi.org/10.15252/emmm.201707885. PubMed PMID: 29113976; PubMed Central PMCID: PMCPMC5760855.CrossRefPubMedGoogle Scholar
  211. 211.
    Feustel SM, Meissner M, Liesenfeld O. Toxoplasma gondii and the blood-brain barrier. Virulence. 2012;3(2):182–92.  https://doi.org/10.4161/viru.19004. PubMed PMID: 22460645; PubMed Central PMCID: PMCPMC3396697.CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Ueno N, Harker KS, Clarke EV, McWhorter FY, Liu WF, Tenner AJ, et al. Real-time imaging of Toxoplasma-infected human monocytes under fluidic shear stress reveals rapid translocation of intracellular parasites across endothelial barriers. Cell Microbiol. 2014;16(4):580–95.  https://doi.org/10.1111/cmi.12239. PubMed PMID: 24245749; PubMed Central PMCID: PMCPMC4141879.CrossRefPubMedGoogle Scholar
  213. 213.
    Sa Q, Ochiai E, Sengoku T, Wilson ME, Brogli M, Crutcher S, et al. VCAM-1/alpha4beta1 integrin interaction is crucial for prompt recruitment of immune T cells into the brain during the early stage of reactivation of chronic infection with Toxoplasma gondii to prevent toxoplasmic encephalitis. Infect Immun. 2014;82(7):2826–39.  https://doi.org/10.1128/IAI.01494-13. PubMed PMID: 24752515; PubMed Central PMCID: PMCPMC4097612.CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Estato V, Stipursky J, Gomes F, Mergener TC, Frazao-Teixeira E, Allodi S, et al. The neurotropic parasite toxoplasma gondii induces sustained neuroinflammation with microvascular dysfunction in infected mice. Am J Pathol. 2018;188(11):2674–87.  https://doi.org/10.1016/j.ajpath.2018.07.007. PubMed PMID: 30121257.CrossRefPubMedGoogle Scholar
  215. 215.
    Silva NM, Manzan RM, Carneiro WP, Milanezi CM, Silva JS, Ferro EA, et al. Toxoplasma gondii: the severity of toxoplasmic encephalitis in C57BL/6 mice is associated with increased ALCAM and VCAM-1 expression in the central nervous system and higher blood-brain barrier permeability. Exp Parasitol. 2010;126(2):167–77.  https://doi.org/10.1016/j.exppara.2010.04.019. PubMed PMID: 20434443.CrossRefPubMedGoogle Scholar
  216. 216.
    Clark RT, Nance JP, Noor S, Wilson EH. T-cell production of matrix metalloproteinases and inhibition of parasite clearance by TIMP-1 during chronic Toxoplasma infection in the brain. ASN Neuro. 2011;3(1):e00049.  https://doi.org/10.1042/AN20100027. PubMed PMID: 21434872; PubMed Central PMCID: PMCPMC3024837.CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Dincel GC, Atmaca HT. Nitric oxide production increases during Toxoplasma gondii encephalitis in mice. Exp Parasitol. 2015;156:104–12.  https://doi.org/10.1016/j.exppara.2015.06.009. PubMed PMID: 26115941.CrossRefPubMedGoogle Scholar
  218. 218.
    Masocha W, Kristensson K. Human African trypanosomiasis: how do the parasites enter and cause dysfunctions of the nervous system in murine models? Brain Res Bull. 2019;145:18.  https://doi.org/10.1016/j.brainresbull.2018.05.022. PubMed PMID: 29870779.CrossRefPubMedGoogle Scholar
  219. 219.
    Laperchia C, Palomba M, Seke Etet PF, Rodgers J, Bradley B, Montague P, et al. Trypanosoma brucei invasion and T-cell infiltration of the brain parenchyma in experimental sleeping sickness: timing and correlation with functional changes. PLoS Negl Trop Dis. 2016;10(12):e0005242.  https://doi.org/10.1371/journal.pntd.0005242. PubMed PMID: 28002454; PubMed Central PMCID: PMCPMC5217973.CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Mogk S, Meiwes A, Shtopel S, Schraermeyer U, Lazarus M, Kubata B, et al. Cyclical appearance of African trypanosomes in the cerebrospinal fluid: new insights in how trypanosomes enter the CNS. PLoS One. 2014;9(3):e91372.  https://doi.org/10.1371/journal.pone.0091372. PubMed PMID: 24618708; PubMed Central PMCID: PMCPMC3950183.CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Sternberg JM, Rodgers J, Bradley B, Maclean L, Murray M, Kennedy PG. Meningoencephalitic African trypanosomiasis: brain IL-10 and IL-6 are associated with protection from neuro-inflammatory pathology. J Neuroimmunol. 2005;167(1–2):81–9.  https://doi.org/10.1016/j.jneuroim.2005.06.017. PubMed PMID: 16054238.CrossRefPubMedGoogle Scholar
  222. 222.
    Courtioux B, Boda C, Vatunga G, Pervieux L, Josenando T, M’Eyi PM, et al. A link between chemokine levels and disease severity in human African trypanosomiasis. Int J Parasitol. 2006;36(9):1057–65.  https://doi.org/10.1016/j.ijpara.2006.04.011. PubMed PMID: 16765963.CrossRefPubMedGoogle Scholar
  223. 223.
    Medeiros NI, Fares RC, Franco EP, Sousa GR, Mattos RT, Chaves AT, et al. Differential expression of matrix metalloproteinases 2, 9 and cytokines by neutrophils and monocytes in the clinical forms of chagas disease. PLoS Negl Trop Dis. 2017;11(1):e0005284.  https://doi.org/10.1371/journal.pntd.0005284. PubMed PMID: 28118356; PubMed Central PMCID: PMCPMC5261563.CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Olivera GC, Ren X, Vodnala SK, Lu J, Coppo L, Leepiyasakulchai C, et al. Nitric oxide protects against infection-induced neuroinflammation by preserving the stability of the blood-brain barrier. PLoS Pathog. 2016;12(2):e1005442.  https://doi.org/10.1371/journal.ppat.1005442. PubMed PMID: 26915097; PubMed Central PMCID: PMCPMC4767601.CrossRefPubMedPubMedCentralGoogle Scholar
  225. 225.
    Amin DN, Rottenberg ME, Thomsen AR, Mumba D, Fenger C, Kristensson K, et al. Expression and role of CXCL10 during the encephalitic stage of experimental and clinical African trypanosomiasis. J Infect Dis. 2009;200(10):1556–65.  https://doi.org/10.1086/644597. PubMed PMID: 19827943.CrossRefPubMedGoogle Scholar
  226. 226.
    Grab DJ, Garcia-Garcia JC, Nikolskaia OV, Kim YV, Brown A, Pardo CA, et al. Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells. PLoS Negl Trop Dis. 2009;3(7):e479.  https://doi.org/10.1371/journal.pntd.0000479. PubMed PMID: 19621073; PubMed Central PMCID: PMCPMC2707606.CrossRefPubMedPubMedCentralGoogle Scholar
  227. 227.
    Siddiqui R, Emes R, Elsheikha H, Khan NA. Area 51: how do Acanthamoeba invade the central nervous system? Trends Parasitol. 2011;27(5):185–9.  https://doi.org/10.1016/j.pt.2011.01.005. PubMed PMID: 21507718.CrossRefPubMedGoogle Scholar
  228. 228.
    Khan NA, Siddiqui R. Acanthamoeba affects the integrity of human brain microvascular endothelial cells and degrades the tight junction proteins. Int J Parasitol. 2009;39(14):1611–6.  https://doi.org/10.1016/j.ijpara.2009.06.004. PubMed PMID: 19580812.CrossRefPubMedGoogle Scholar
  229. 229.
    Jayasekera S, Matin A, Sissons J, Maghsood AH, Khan NA. Balamuthia mandrillaris stimulates interleukin-6 release in primary human brain microvascular endothelial cells via a phosphatidylinositol 3-kinase-dependent pathway. Microbes Infect. 2005;7(13):1345–51.  https://doi.org/10.1016/j.micinf.2005.05.001. PubMed PMID: 16027019.CrossRefPubMedGoogle Scholar
  230. 230.
    Sissons J, Kim KS, Stins M, Jayasekera S, Alsam S, Khan NA. Acanthamoeba castellanii induces host cell death via a phosphatidylinositol 3-kinase-dependent mechanism. Infect Immun. 2005;73(5):2704–8.  https://doi.org/10.1128/IAI.73.5.2704-2708.2005. PubMed PMID: 15845472; PubMed Central PMCID: PMCPMC1087316.CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Matin A, Siddiqui R, Jayasekera S, Khan NA. Increasing importance of Balamuthia mandrillaris. Clin Microbiol Rev. 2008;21(3):435–48.  https://doi.org/10.1128/CMR.00056-07. PubMed PMID: 18625680; PubMed Central PMCID: PMCPMC2493082.CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Baig AM. Pathogenesis of amoebic encephalitis: are the amoebae being credited to an ‘inside job’ done by the host immune response? Acta Trop. 2015;148:72–6.  https://doi.org/10.1016/j.actatropica.2015.04.022. PubMed PMID: 25930186.CrossRefPubMedGoogle Scholar
  233. 233.
    Alsam S, Sissons J, Jayasekera S, Khan NA. Extracellular proteases of Acanthamoeba castellanii (encephalitis isolate belonging to T1 genotype) contribute to increased permeability in an in vitro model of the human blood-brain barrier. J Infect. 2005;51(2):150–6.  https://doi.org/10.1016/j.jinf.2004.09.001. PubMed PMID: 16038767.CrossRefPubMedGoogle Scholar
  234. 234.
    Iqbal J, Naeem K, Siddiqui R, Khan NA. In vitro inhibition of protease-activated receptors 1, 2 and 4 demonstrates that these receptors are not involved in an Acanthamoeba castellanii keratitis isolate-mediated disruption of the human brain microvascular endothelial cells. Exp Parasitol. 2014;145(Suppl):S78–83.  https://doi.org/10.1016/j.exppara.2014.03.023. PubMed PMID: 24703976.CrossRefPubMedGoogle Scholar
  235. 235.
    Lonsdale-Eccles JD, Grab DJ. Trypanosome hydrolases and the blood-brain barrier. Trends Parasitol. 2002;18(1):17–9. PubMed PMID: 11850009.CrossRefGoogle Scholar
  236. 236.
    Sissons J, Alsam S, Goldsworthy G, Lightfoot M, Jarroll EL, Khan NA. Identification and properties of proteases from an Acanthamoeba isolate capable of producing granulomatous encephalitis. BMC Microbiol. 2006;6:42.  https://doi.org/10.1186/1471-2180-6-42. PubMed PMID: 16672059; PubMed Central PMCID: PMCPMC1464133.CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Shen L, Black ED, Witkowski ED, Lencer WI, Guerriero V, Schneeberger EE, et al. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci. 2006;119(Pt 10):2095–106.  https://doi.org/10.1242/jcs.02915. PubMed PMID: 16638813.CrossRefPubMedGoogle Scholar
  238. 238.
    Kim BJ, Hancock BM, Bermudez A, Del Cid N, Reyes E, van Sorge NM, et al. Bacterial induction of Snail1 contributes to blood-brain barrier disruption. J Clin Invest. 2015;125(6):2473–83.  https://doi.org/10.1172/JCI74159. PubMed PMID: 25961453; PubMed Central PMCID: PMCPMC4497739.CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Ebrahimi CM, Sheen TR, Renken CW, Gottlieb RA, Doran KS. Contribution of lethal toxin and edema toxin to the pathogenesis of anthrax meningitis. Infect Immun. 2011;79(7):2510–8.  https://doi.org/10.1128/IAI.00006-11. PubMed PMID: 21518787; PubMed Central PMCID: PMCPMC3191953.CrossRefPubMedPubMedCentralGoogle Scholar
  240. 240.
    Guichard A, McGillivray SM, Cruz-Moreno B, van Sorge NM, Nizet V, Bier E. Anthrax toxins cooperatively inhibit endocytic recycling by the Rab11/Sec15 exocyst. Nature. 2010;467(7317):854–8.  https://doi.org/10.1038/nature09446. PubMed PMID: 20944747; PubMed Central PMCID: PMCPMC5831355.CrossRefPubMedPubMedCentralGoogle Scholar
  241. 241.
    Coureuil M, Lecuyer H, Scott MG, Boularan C, Enslen H, Soyer M, et al. Meningococcus Hijacks a beta2-adrenoceptor/beta-Arrestin pathway to cross brain microvasculature endothelium. Cell. 2010;143(7):1149–60.  https://doi.org/10.1016/j.cell.2010.11.035. PubMed PMID: 21183077.CrossRefPubMedPubMedCentralGoogle Scholar
  242. 242.
    Coureuil M, Mikaty G, Miller F, Lecuyer H, Bernard C, Bourdoulous S, et al. Meningococcal type IV pili recruit the polarity complex to cross the brain endothelium. Science. 2009;325(5936):83–7.  https://doi.org/10.1126/science.1173196. PubMed PMID: 19520910; PubMed Central PMCID: PMCPMC3980637.CrossRefPubMedGoogle Scholar
  243. 243.
    Schubert-Unkmeir A, Konrad C, Slanina H, Czapek F, Hebling S, Frosch M. Neisseria meningitidis induces brain microvascular endothelial cell detachment from the matrix and cleavage of occludin: a role for MMP-8. PLoS Pathog. 2010;6(4):e1000874.  https://doi.org/10.1371/journal.ppat.1000874. PubMed PMID: 20442866; PubMed Central PMCID: PMCPMC2861698.CrossRefPubMedPubMedCentralGoogle Scholar
  244. 244.
    Verma S, Kumar M, Gurjav U, Lum S, Nerurkar VR. Reversal of West Nile virus-induced blood-brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor. Virology. 2010;397(1):130–8.  https://doi.org/10.1016/j.virol.2009.10.036. PubMed PMID: 19922973; PubMed Central PMCID: PMCPMC3102050.CrossRefPubMedGoogle Scholar
  245. 245.
    Louboutin JP, Strayer DS. Blood-brain barrier abnormalities caused by HIV-1 gp120: mechanistic and therapeutic implications. ScientificWorldJournal. 2012;2012:482575.  https://doi.org/10.1100/2012/482575. PubMed PMID: 22448134; PubMed Central PMCID: PMCPMC3289936.CrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    Chaves AJ, Vergara-Alert J, Busquets N, Valle R, Rivas R, Ramis A, et al. Neuroinvasion of the highly pathogenic influenza virus H7N1 is caused by disruption of the blood brain barrier in an avian model. PLoS One. 2014;9(12):e115138.  https://doi.org/10.1371/journal.pone.0115138. PubMed PMID: 25506836; PubMed Central PMCID: PMCPMC4266681.CrossRefPubMedPubMedCentralGoogle Scholar
  247. 247.
    Hosseini S, Wilk E, Michaelsen-Preusse K, Gerhauser I, Baumgartner W, Geffers R, et al. Long-term neuroinflammation induced by influenza A virus infection and the impact on hippocampal neuron morphology and function. J Neurosci. 2018;38(12):3060–80.  https://doi.org/10.1523/JNEUROSCI.1740-17.2018. PubMed PMID: 29487124.CrossRefPubMedPubMedCentralGoogle Scholar
  248. 248.
    Zhou Y, Lu ZN, Guo YJ, Mei YW. Favorable effects of MMP-9 knockdown in murine herpes simplex encephalitis using small interfering RNA. Neurol Res. 2010;32(8):801–9.  https://doi.org/10.1179/016164110X12644252260556. PubMed PMID: 20483026.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departments of MedicineWashington University School of MedicineSt. LouisUSA
  2. 2.Departments of Pathology and ImmunologyWashington University School of MedicineSt. LouisUSA
  3. 3.Departments of NeuroscienceWashington University School of MedicineSt. LouisUSA
  4. 4.Division of Biology and Biomedical SciencesCenter for Neuroimmunology & Neuroinfectious Diseases, Washington University School of MedicineSt. LouisUSA

Personalised recommendations