The Roles of Regulatory T Cells in Central Nervous System Autoimmunity

  • Brooke A. Keating
  • Justin G. Lees
  • Gila Moalem-TaylorEmail author
Part of the Contemporary Clinical Neuroscience book series (CCNE)


Regulatory T (Treg) cells are a population of T cells that can functionally supress an immune response and are fundamental in maintaining T cell tolerance to self-antigens and immune homeostasis in the healthy individual. They exert strong suppressive functions through a variety of mechanisms, including modulation of antigen-presenting cell maturation or function, metabolic disruption, the production and secretion of anti-inflammatory cytokines and direct cytotoxicity. Treg cells are generally thought to have a beneficial role in most immune-mediated contexts, and a loss of suppressive capability and altered numbers in a variety of neurological conditions can occur. This review examines the role of Treg cells in the context of central nervous system (CNS) autoimmunity, and how they contribute to both relatively common and more rare diseases involving demyelination or degeneration of the CNS, including multiple sclerosis, neuromyelitis optica, acute disseminated encephalomyelitis, anti-NMDAR encephalitis, and narcolepsy with cataplexy. Although the role of Treg cells in some of these conditions is still very much in the preliminary stages, it is a feasible notion that with more research, harnessing the innate suppressive abilities of these potent immune cells will contribute to the development of novel therapeutics in autoimmune disorders of the CNS.


Regulatory T cells Autoimmunity Central nervous system Anti-inflammatory Suppressive 



Acute disseminated encephalomyelitis


Antigen-presenting cells


Aquaporin 4


Adenosine receptor 2A


Blood–brain barrier


Cyclic adenosine monophosphate


Clinically isolated syndrome


Central nervous system


Cerebrospinal fluid


Cytotoxic T lymphocyte antigen 4


Dendritic cell


DEpletion of REGulatory T cells


Experimental autoimmune encephalomyelitis


Epstein–Barr virus-induced gene 3


Forkhead box protein 3


Granulocyte-macrophage colony-stimulating factor


Human leukocyte antigen


Inflammatory bowel disease


Indoleamine 2,3-dioxygenase




Immunoglobulin G




Inducible regulatory T cell


Lymphocyte-activation gene 3


Lateral hypothalamus


Myelin basic protein


Myasthenia gravis


Mouse hepatitis virus


Myelin oligodendrocyte glycoprotein


Multiple sclerosis


N-methyl-D-aspartate receptor


Neuromyelitis optica


Neuromyelitis optica spectrum disorders


Natural regulatory T cell


Narcolepsy type 1


Peripheral blood mononuclear cells




Primary progressive multiple sclerosis


Relapsing–remitting multiple sclerosis


Secondary progressive multiple sclerosis


T cell receptors


Transforming growth factor


T helper cell


Tumour necrosis factor


Regulatory T cell


  1. 1.
    Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–87.PubMedGoogle Scholar
  2. 2.
    Duffy SS, Lees JG, Moalem-Taylor G. The contribution of immune and glial cell types in experimental autoimmune encephalomyelitis and multiple sclerosis. Mult Scler Int. 2014;2014:1–17.Google Scholar
  3. 3.
    Wei S, Kryczek I, Zou W. Regulatory T-cell compartmentalization and trafficking. Blood. 2006;108:426–31.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Sharma A, Rudra D. Emerging functions of regulatory T cells in tissue homeostasis. Front Immunol. 2018;9:883.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Gavin MA, Torgerson TR, Houston E, Ho WY, Stray-pedersen A, Ocheltree EL, et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci U S A. 2018;103(17):6659–64.Google Scholar
  6. 6.
    Devaud C, Yong CSM, John LB, Westwood JA, Duong CPM, House CM, et al. Foxp3 expression in macrophages associated with RENCA tumors in mice. PLoS One. 2014;9(9) Scholar
  7. 7.
    Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells. Nat Immunol. 2003;4(4):330–6.Google Scholar
  8. 8.
    Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA, et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature. 2007;445(February):771–5.PubMedGoogle Scholar
  9. 9.
    Gol-ara M, Jadidi-niaragh F, Sadria R, Azizi G, Mirshafiey A. The role of different subsets of regulatory T cells in immunopathogenesis of rheumatoid arthritis. Arthritis. 2012;2012:805875.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Lan R, Ansari A, Lian Z, Gershwin M. Regulatory T cells: development, function and role in autoimmunity. Autoimmun Rev. 2005;4(6):351–63.PubMedGoogle Scholar
  11. 11.
    Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev. 2001;182:18–32.PubMedGoogle Scholar
  12. 12.
    Abdel-Gadir A, Massoud AH, Chatila TA. Antigen-specific Treg cells in immunological tolerance: implications for allergic diseases. F1000Res. 2018;7(38) Scholar
  13. 13.
    Vignali DAA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8(7):523–32.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M, et al. Immunologic self-tolerance maintained by CD25+CD4+naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol. 1998;10(12):1969–80.PubMedGoogle Scholar
  15. 15.
    Read S, Malmström V, Powrie F. Cytotoxic T Lymphocyte-Associated Antigen 4 Plays an Essential Role in the Function of Cd25+ Cd4+ Regulatory Cells That Control Intestinal Inflammation. J Exp Med. 2000;192(2):295–302.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Oderup C, Cederbom L, Makowska A, Cilio CM, Ivars F. Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression. Immunology. 2006;118(2):240–9.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Serra P, Amrani A, Yamanouchi J, Han B, Thiessen S, Utsugi T, et al. CD40 Ligation Releases Immature Dendritic Cells from the Control of Regulatory CD4+CD25+T Cells. Immunity. 2003;19(6):877–89.PubMedGoogle Scholar
  18. 18.
    Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 2004;4(10):762–74.PubMedGoogle Scholar
  19. 19.
    Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 2003;4(12):1206–12.PubMedGoogle Scholar
  20. 20.
    Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004;21(4):503–13.PubMedGoogle Scholar
  21. 21.
    Workman CJ, Vignali DAA. Negative Regulation of T Cell Homeostasis by Lymphocyte Activation Gene-3 (CD223). J Immunol. 2005;174(2):688–95.PubMedGoogle Scholar
  22. 22.
    Liang B, Workman C, Lee J, Chew C, Dale BM, Colonna L, et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol. 2008;180(9):5916–26.PubMedGoogle Scholar
  23. 23.
    Sarris M, Andersen KG, Randow F, Mayr L, Betz AG. Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity. 2008;28(3):402–13.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007;204(6):1257–65.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3+Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110(4):1225–32.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, Mosmann TR. T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. J Immunol. 2006;177(10):6780–6.PubMedGoogle Scholar
  27. 27.
    Zarek PE, Huang CT, Lutz ER, Kowalski J, Horton MR, Linden J, et al. A2Areceptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood. 2008;111(1):251–9.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Bopp T, Becker C, Klein M, Klein-Heßling S, Palmetshofer A, Serfling E, et al. Cyclic adenosine monophosphate is a key component of regulatory T cell–mediated suppression. J Exp Med. 2007;204(6):1303–10.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Thornton AM, Shevach EM. CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med. 1998;188(2):287–96.PubMedPubMedCentralGoogle Scholar
  30. 30.
    de la Rosa M, Rutz S, Dorninger H, Scheffold A. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur J Immunol. 2004;34(9):2480–8.Google Scholar
  31. 31.
    Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+CD25+Foxp3+regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+T cells. Nat Immunol. 2007;8(12):1353–62.Google Scholar
  32. 32.
    Oberle N, Eberhardt N, Falk CS, Krammer PH, Suri-Payer E. Rapid suppression of cytokine transcription in human CD4+CD25- T cells by CD4+Foxp3+ regulatory T cells: independence of IL-2 consumption, TGF-, and various inhibitors of TCR signaling. J Immunol. 2007;179(6):3578–87.Google Scholar
  33. 33.
    Hawrylowicz CM, O’Garra A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol. 2005;5(4):271–83.Google Scholar
  34. 34.
    Joetham A, Takada K, Taube C, Miyahara N, Matsubara S, Koya T, et al. Naturally occurring lung CD4+CD25+ T cell regulation of airway allergic responses depends on IL-10 induction of TGF-β. J Immunol. 2007;178(3):1433–42.Google Scholar
  35. 35.
    Kearley J, Barker JE, Robinson DS, Lloyd CM. Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4 + CD25 + regulatory T cells is interleukin 10 dependent. J Exp Med. 2005;202(11):1539.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546–58.PubMedGoogle Scholar
  37. 37.
    Loser K, Apelt J, Voskort M, Mohaupt M, Balkow S, Schwarz T, et al. IL-10 controls ultraviolet-induced carcinogenesis in mice. J Immunol. 2007;179(1):365–71.Google Scholar
  38. 38.
    Erhardt A, Biburger M, Papadopoulos T, Tiegs G. IL-10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A-induced liver injury in mice. Hepatology. 2007;45(2):475–85.Google Scholar
  39. 39.
    Schumacher A, Wafula PO, Bertoja AZ, Sollwedel A, Thuere C, Wollenberg I, et al. Mechanisms of action of regulatory T cells specific for paternal antigens during pregnancy. Obstet Gynecol. 2007;110(5):1137–45.Google Scholar
  40. 40.
    Mann MK, Maresz K, Shriver LP, Tan Y, Dittel BN. B cell regulation of CD4+CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J Immunol. 2007;178(6):3447–56.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Fahlén L, Read S, Gorelik L, Hurst SD, Coffman RL, Flavell RA, et al. T cells that cannot respond to TGF-β escape control by CD4+ CD25+ regulatory T cells. J Exp Med. 2005;201(5):737–46.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Hilchey SP, De A, Rimsza LM, Bankert RB, Bernstein SH. Follicular lymphoma intratumoral CD4+CD25+GITR+ regulatory T cells potently suppress CD3/CD28-costimulated autologous and allogeneic CD8+CD25- and CD4+CD25- T cells. J Immunol. 2007;178(7):4051–61.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Strauss L, Bergmann C, Szczepanski M, Gooding W, Johnson JT, Whiteside TL. A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-β1 mediates suppression in the tumor microenvironment. Clin Cancer Res. 2007;13(15):4345–54.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Kursar M, Koch M, Mittrucker H-W, Nouailles G, Bonhagen K, Kamradt T, et al. Cutting edge: regulatory T cells prevent efficient clearance of Mycobacterium tuberculosis. J Immunol. 2007;178(5):2661–5.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Li MO, Wan YY, Flavell RA. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity. 2007;26(5):579–91.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Clayton A, Mitchell JP, Court J, Mason MD, Tabi Z. Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res. 2007;67(15):7458–66.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Xia ZW, Xu LQ, Zhong WW, Wei JJ, Li NL, Shao J, et al. Heme oxygenase-1 attenuates ovalbumin-induced airway inflammation by up-regulation of FoxP3 T-regulatory cells, interleukin-10, and membrane-bound transforming growth factor-β1. Am J Pathol. 2007;171(6):1904–14.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature. 2007;450:566–9.Google Scholar
  49. 49.
    Shen P, Roch T, Lampropoulou V, O’Connor RA, Stervbo U, Hilgenberg E, et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature. 2014;507(7492):366–70.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Kochetkova I, Golden S, Holderness K, Callis G, Pascual DW. IL-35 stimulation of CD39+ regulatory T cells confers protection against collagen II-induced arthritis via the production of IL-10. J Immunol. 2010;184(12):7144–53.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity. 2004;21(4):589–601.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Gondek DC, Lu L-F, Quezada SA, Sakaguchi S, Noelle RJ. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol. 2005;174(4):1783–6.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhao D-M, Thornton AM, DiPaolo RJ, Shevach EM. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood. 2006;107:3925–32.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Josefowicz SZ, Lu L-F, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Gondek DC, DeVries V, Nowak EC, Lu L-F, Bennett KA, Scott ZA, et al. Transplantation survival is maintained by granzyme B+ regulatory cells and adaptive regulatory T cells. J Immunol. 2008;181(7):4752–60.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 2012;12(9):623–35.Google Scholar
  57. 57.
    Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Venken K, Hellings N, Thewissen M, Somers V, Hensen K, Rummens J-L, et al. Compromised CD4+CD25high regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology. 2008;123(1):79–89.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Dominguez-Villar M, Hafler DA. Regulatory T cells in autoimmune disease. Nat Immunol. 2018;19:665–73.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Rolak LA. Multiple sclerosis: it’s not the disease you thought it was. Clin Med Res. 2003;1:57–60.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Browning V, Joseph M, Sedrak M. Multiple sclerosis: a comprehensive review for the physician assistant. J Am Acad Phys Assist. 2012;25(8):24–9.Google Scholar
  62. 62.
    Ascherio A, Munger K. Epidemiology of multiple sclerosis: from risk factors to prevention. Semin Neurol. 2008;28(1):017–28.Google Scholar
  63. 63.
    Goldenberg MM. Multiple sclerosis review. P T. 2012;37(3):175–84.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Frohman EM, Racke MK, Raine CS. Multiple sclerosis — the plaque and its pathogenesis. N Engl J Med. 2006;354:942–55.Google Scholar
  65. 65.
    Bjartmar C, Yin X, Trapp BD. Axonal pathology in myelin disorders. J Neurocytol. 1999;28(4–5):383–95.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Steinman L. Immunology of relapse and remission in multiple sclerosis. Annu Rev Immunol. 2014;32:257–81.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Duffy SS, Keating BA, Perera CJ, Moalem-Taylor G. The role of regulatory T cells in nervous system pathologies. J Neurosci Res. 2017;96(6):951–68.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Korn T, Reddy J, Gao W, Bettelli E, Awasthi A, Petersen TR, et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med. 2007;13(4):423–31.PubMedPubMedCentralGoogle Scholar
  69. 69.
    McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol. 2005;175(5):3025–32.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Matsushita T, Horikawa M, Iwata Y, Tedder TF. Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. J Immunol. 2010;185(4):2240–52. Scholar
  71. 71.
    O’Connor RA, Malpass KH, Anderton SM. The inflamed central nervous system drives the activation and rapid proliferation of Foxp3+ regulatory T cells. J Immunol. 2007;179(2):958–66.PubMedGoogle Scholar
  72. 72.
    Koutrolos M, Berer K, Kawakami N, Wekerle H, Krishnamoorthy G. Treg cells mediate recovery from EAE by controlling effector T cell proliferation and motility in the CNS. Acta Neuropathol Commun. 2014;2:163.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Haas J, Hug A, Viehöver A, Fritzsching B, Falk CS, Filser A, et al. Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur J Immunol. 2005;35(11):3343–52.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med. 2004;199(7):971.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Putheti P, Pettersson A, Soderstrom M, Link H, Huang YM. Circulating CD4+CD25+ T regulatory cells are not altered in multiple sclerosis and unaffected by disease-modulating drugs. J Clin Immunol. 2004;24(2):155–61.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Bjerg L, Brosbol-Ravnborg A, Torring C, Dige A, Bundgaard B, Petersen T, et al. Altered frequency of T regulatory cells is associated with disability status in relapsing-remitting multiple sclerosis patients. J Neuroimmunol. 2012;249(1–2):76–82.PubMedGoogle Scholar
  77. 77.
    Kouchaki E, Salehi M, Sharif MR, Nikoueinejad H, Akbari H. Numerical status of CD4 + CD25 + FoxP3 + and CD8 + CD28 - regulatory T cells in multiple sclerosis. Iran J Basic Med Sci. 2014;17(3):250–5.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Libera DD, Di Mitri D, Bergami A, Centonze D, Gasperini C, Grasso MG, et al. T regulatory cells are markers of disease activity in multiple sclerosis patients. PLoS One. 2011;6(6) Scholar
  79. 79.
    Fletcher JM, Lonergan R, Costelloe L, Kinsella K, Moran B, O’Farrelly C, et al. CD39+Foxp3+ regulatory T cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol. 2009;183(11):7602–10.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Noori-Zadeh A, Mesbah-Namin SA, Bistoon-Beigloo S, Bakhtiyari S, Abbaszadeh H-A, Darabi S, et al. Regulatory T cell number in multiple sclerosis patients: a meta-analysis. Mult Scler Relat Disord. 2016;5:73–6.PubMedGoogle Scholar
  81. 81.
    Dominguez-Villar M, Baecher-Allan CM, Hafler DA. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat Med. 2011;17(6):673–5.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Balint B, Haas J, Schwarz A, Jarius S, Fürwentsches A, Engelhardt K, et al. T-cell homeostasis in pediatric multiple sclerosis: old cells in young patients. Neurology. 2013;81(9):784–92.PubMedGoogle Scholar
  83. 83.
    Dombrowski Y, O’Hagan T, DIttmer M, Penalva R, Mayoral SR, Bankhead P, et al. Regulatory T cells promote myelin regeneration in the central nervous system. Nat Neurosci. 2017;20(5):674–80.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Leask A, Abraham DJ. All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci. 2006;119(23):4803–10.PubMedGoogle Scholar
  85. 85.
    Lin CG, Leu SJ, Chen N, Tebeau CM, Lin SX, Yeung CY, et al. CCN3 (NOV) is a novel angiogenic regulator of the CCN protein family. J Biol Chem. 2003;278(26):24200–8.PubMedGoogle Scholar
  86. 86.
    Wang X, He H, Wu X, Hu J, Tan Y. Promotion of dentin regeneration via CCN3 modulation on Notch and BMP signaling pathways. Biomaterials. 2014;35(9):2720–9.PubMedGoogle Scholar
  87. 87.
    Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6:805–15.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Bradl M, Lassmann H. Experimental models of neuromyelitis optica. Brain Pathol. 2014;24(1):74-82.Google Scholar
  89. 89.
    Ghezzi A, Bergamaschi R, Martinelli V, Trojano M, Tola MR, Merelli E, et al. Clinical characteristics, course and prognosis of relapsing Devic’s neuromyelitis optica. J Neurol. 2004;251(1):47–52.PubMedGoogle Scholar
  90. 90.
    Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85:177–89.PubMedPubMedCentralGoogle Scholar
  91. 91.
    De Carvalho Jennings Pereira WL, EMV R, Kallaur AP, Kaimen-Maciel DR. Epidemiological, clinical, and immunological characteristics of neuromyelitis optica: a review. J Neurol Sci. 2015;355:7–17.Google Scholar
  92. 92.
    Takahashi T, Fujihara K, Nakashima I, Misu T, Miyazawa I, Nakamura M, et al. Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study on antibody titre. Brain. 2007;130(5):1235–43.Google Scholar
  93. 93.
    Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med. 2005;202(4):473–7.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Jarius S, Paul F, Franciotta D, De Seze J, Münch C, Salvetti M, et al. Neuromyelitis optica spectrum disorders in patients with myasthenia gravis: ten new aquaporin-4 antibody positive cases and a review of the literature. Mult Scler J. 2012;18(8):1135–43.Google Scholar
  95. 95.
    Linhares UC, Schiavoni PB, Barros PO, Kasahara TM, Teixeira B, Ferreira TB, et al. The ex vivo production of IL-6 and IL-21 by CD4+ T cells is directly associated with neurological disability in neuromyelitis optica patients. J Clin Immunol. 2013;33(1):179–89.PubMedGoogle Scholar
  96. 96.
    Matsuya N, Komori M, Nomura K, Nakane S, Fukudome T, Goto H, et al. Increased T-cell immunity against aquaporin-4 and proteolipid protein in neuromyelitis optica. Int Immunol. 2011;23(9):565–73.PubMedGoogle Scholar
  97. 97.
    Uzawa A, Mori M, Arai K, Sato Y, Hayakawa S, Masuda S, et al. Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6. Mult Scler. 2010;16(12):1443–52.PubMedGoogle Scholar
  98. 98.
    Ikeguchi R, Shimizu Y, Suzuki S, Shimizu S, Kabasawa C, Hashimoto S, et al. Japanese cases of neuromyelitis optica spectrum disorder associated with myasthenia gravis and a review of the literature. Clin Neurol Neurosurg. 2014;125:217–21.PubMedGoogle Scholar
  99. 99.
    Fattorossi A, Battaglia A, Buzzonetti A, Ciaraffa F, Scambia G, Evoli A. Circulating and thymic CD4+ CD25+ T regulatory cells in myasthenia gravis: effect of immunosuppressive treatment. Immunology. 2005;116(1):134–41.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Zhang Y, Wang HB, Chi LJ, Wang WZ. The role of FoxP3+CD4+CD25hi Tregs in the pathogenesis of myasthenia gravis. Immunol Lett. 2009;122(1):52–7.PubMedGoogle Scholar
  101. 101.
    Thiruppathi M, Rowin J, Ganesh B, Sheng JR, Prabhakar BS, Meriggioli MN. Impaired regulatory function in circulating CD4+CD25highCD127low/- T cells in patients with myasthenia gravis. Clin Immunol. 2012;145(3):209–23.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Varrin-Doyer M, Spencer CM, Schulze-Topphoff U, Nelson PA, Stroud RM, Bruce BA, et al. Aquaporin 4-specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize Clostridium ABC transporter. Ann Neurol. 2012;72(1):53–64.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Brill L, Lavon I, Vaknin Dembinsky A. Neuromyelitis optica and the role of Foxp3+ regulatory T cells. ECTRIMS. 2018;24:836.Google Scholar
  104. 104.
    Bennett JL, Lam C, Kalluri SR, Saikali P, Bautista K, Dupree C, et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol. 2009;66(5):617–29.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Bradl M, Misu T, Takahashi T, Watanabe M, Mader S, Reindl M, et al. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol. 2009;66(5):630–43.Google Scholar
  106. 106.
    Kinoshita M, Nakatsuji Y, Kimura T, Moriya M, Takata K, Okuno T, et al. Neuromyelitis optica: passive transfer to rats by human immunoglobulin. Biochem Biophys Res Commun. 2009;386(4):623–7.PubMedGoogle Scholar
  107. 107.
    Ratelade J, Bennett JL, Verkman AS. Intravenous neuromyelitis optica autoantibody in mice targets aquaporin-4 in peripheral organs and area postrema. PLoS One. 2011;6(11) Scholar
  108. 108.
    Jones MV, Collongues N, De Seze J, Kinoshita M, Nakatsuji Y, Levy M. Review of animal models of neuromyelitis optica. Mult Scler Relat Disord. 2012;1:174–9.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Davoudi V, Keyhanian K, Bove RM, Chitnis T. Immunology of neuromyelitis optica during pregnancy. Neurol Neuroimmunol NeuroInflamm. 2016;3 Scholar
  110. 110.
    Bar-Or A, Steinman L, Behne JM, Benitez-Ribas D, Chin PS, Clare-Salzler M, et al. Restoring immune tolerance in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm. 2016;3(5):e277.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Blat D, Zigmond E, Alteber Z, Waks T, Eshhar Z. Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells. Mol Ther. 2014;22(5):1018–28.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Kim YC, Zhang AH, Su Y, Rieder SA, Rossi RJ, Ettinger RA, et al. Engineered antigen-specific human regulatory T cells: immunosuppression of FVIII-specific T- and B-cell responses. Blood. 2015;125(7):1107–15.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Shimazaki H, Ando Y, Nakano I, Dalmau J. Reversible limbic encephalitis with antibodies against the membranes of neurones of the hippocampus. BMJ Case Rep. 2009;78(3) Scholar
  114. 114.
    Dale RC, de Sousa C, Chong WK, Cox TC, Harding B, Neville BG. Acute disseminated encephalomyelitis, multiphasic disseminated encephalomyelitis and multiple sclerosis in children. Brain. 2000;123(Pt 12):2407–22.Google Scholar
  115. 115.
    Steiner I, Kennedy PGE. Acute disseminated encephalomyelitis: current knowledge and open questions. J Neurovirol. 2015;21(5):473–9.PubMedGoogle Scholar
  116. 116.
    Koelman DLH, Mateen FJ. Acute disseminated encephalomyelitis: current controversies in diagnosis and outcome. J Neurol. 2015;262:2013–24.PubMedGoogle Scholar
  117. 117.
    Tenembaum S, Chamoles N, Fejerman N. Acute disseminated encephalomyelitis: a long-term follow-up study of 84 pediatric patients. Neurology. 2002;59(8):1224–31.Google Scholar
  118. 118.
    Hynson JL, Kornberg AJ, Coleman LT, Shield L, Harvey AS, Kean MJ. Clinical and neuroradiologic features of acute disseminated encephalomyelitis in children. Neurology. 2001;56(10):1308–12.Google Scholar
  119. 119.
    Mikaeloff Y, Caridade G, Husson B, Suissa S, Tardieu M. Acute disseminated encephalomyelitis cohort study: prognostic factors for relapse. Eur J Paediatr Neurol. 2007;11(2):90–5.Google Scholar
  120. 120.
    Torisu H, Kira R, Ishizaki Y, Sanefuji M, Yamaguchi Y, Yasumoto S, et al. Clinical study of childhood acute disseminated encephalomyelitis, multiple sclerosis, and acute transverse myelitis in Fukuoka Prefecture, Japan. Brain Dev. 2010;32(6):454–62.PubMedGoogle Scholar
  121. 121.
    Cohen O, Steiner-Birmanns B, Biran I, Abramsky O, Honigman S, Steiner I. Recurrence of acute disseminated encephalomyelitis at the previously affected brain site. Arch Neurol. 2001;58(5):797–801.PubMedGoogle Scholar
  122. 122.
    Young NP, Weinshenker BG, Parisi JE, Scheithauer B, Giannini C, Roemer SF, et al. Perivenous demyelination: association with clinically defined acute disseminated encephalomyelitis and comparison with pathologically confirmed multiple sclerosis. Brain. 2010;133(2):333–48.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Esposito S, Di Pietro GM, Madini B, Mastrolia MV, Rigante D. A spectrum of inflammation and demyelination in acute disseminated encephalomyelitis (ADEM) of children. Autoimmun Rev. 2015;14:923–9.PubMedGoogle Scholar
  124. 124.
    Erol I, Özkale Y, Alkan Ö, Alehan F. Acute disseminated encephalomyelitis in children and adolescents: a single center experience. Pediatr Neurol. 2013;49(4):266–73.PubMedGoogle Scholar
  125. 125.
    Tenembaum S, Chitnis T, Ness J, Hahn JS, Group IPMSS. Acute disseminated encephalomyelitis. [Review] [157 refs]. Neurology. 2007:68.Google Scholar
  126. 126.
    Sabayan B, Zolghadrasli A. Vasculitis and rheumatologic diseases may play role in the pathogenesis of acute disseminated encephalomyelitis (ADEM). Med Hypotheses. 2007;69(2):322–4.PubMedGoogle Scholar
  127. 127.
    Ishizu T, Minohara M, Ichiyama T, Kira R, Tanaka M, Osoegawa M, et al. CSF cytokine and chemokine profiles in acute disseminated encephalomyelitis. J Neuroimmunol. 2006;175(1–2):52–8.PubMedGoogle Scholar
  128. 128.
    Pröbstel AK, Dornmair K, Bittner R, Sperl P, Jenne D, Magalhaes S, et al. Antibodies to MOG are transient in childhood acute disseminated encephalomyelitis. Neurology. 2011;77(6):580–8.PubMedGoogle Scholar
  129. 129.
    Martino D, Branson JA, Church AJ, Candler PM, Livrea P, Giovannoni G, et al. Soluble adhesion molecules in acute disseminated encephalomyelitis. Pediatr Neurol. 2005;33(4):255–8.PubMedGoogle Scholar
  130. 130.
    Perlman S, Zhao J. Roles of regulatory T cells and IL-10 in virus-induced demyelination. J Neuroimmunol. 2017;308:6–11.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Anghelina D, Zhao J, Trandem K, Perlman S. Role of regulatory T cells in coronavirus-induced acute encephalitis. Virology. 2009;385(2):358–67.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Trandem K, Anghelina D, Zhao J, Perlman S. Regulatory T cells inhibit T cell proliferation and decrease demyelination in mice chronically infected with a coronavirus. J Immunol. 2010;184(8):4391–400.PubMedPubMedCentralGoogle Scholar
  133. 133.
    De Aquino MTP, Puntambekar SS, Savarin C, Bergmann CC, Phares TW, Hinton DR, et al. Role of CD25+ CD4+ T cells in acute and persistent coronavirus infection of the central nervous system. Virology. 2013;447(1–3):112–20.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Correale J, Tenembaum SN. Myelin basis protein and myelin oligodendrocyte glycoprotein T-cell repertoire in childhood and juvenile multiple sclerosis. Mult Scler. 2006;12(4):412–20.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Lau CG, Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci. 2007;8:413–26.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Florance NR, Davis RL, Lam C, Szperka C, Zhou L, Ahmad S, et al. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann Neurol. 2009;66(1):11–8.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Galli J, Clardy SL, Piquet AL. NMDAR encephalitis following herpes simplex virus encephalitis. Curr Infect Dis Rep. 2017;19(1)
  138. 138.
    Tonomura Y, Kataoka H, Hara Y, Takamure M, Naba I, Kitauti T, et al. Clinical analysis of paraneoplastic encephalitis associated with ovarian teratoma. J Neurooncol. 2007;84(3):287–92.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Sansing LH, Tüzün E, Ko MW, Baccon J, Lynch DR, Dalmau J. A patient with encephalitis associated with NMDA receptor antibodies. Nat Clin Pract Neurol. 2007;3(5):291–6.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Iizuka T, Sakai F, Ide T, Monzen T, Yoshii S, Iigaya M, et al. Anti-NMDA receptor encephalitis in Japan: long-term outcome without tumor removal. Neurology. 2008;70(7):504–11.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Seki M, Suzuki S, Iizuka T, Shimizu T, Nihei Y, Suzuki N, et al. Neurological response to early removal of ovarian teratoma in anti-NMDAR encephalitis. J Neurol Neurosurg Psychiatry. 2008;79(3):324–6.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Dalmau J, Tüzün E, Wu H, Masjuan J. Paraneoplastic anti–N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol. 2007;61(1):25–36.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7(12):1091–8.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Tüzün E, Zhou L, Baehring JM, Bannykh S, Rosenfeld MR, Dalmau J. Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma. Acta Neuropathol. 2009;118(6):737–43.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Camdessanché JP, Streichenberger N, Cavillon G, Rogemond V, Jousserand G, Honnorat J, et al. Brain immunohistopathological study in a patient with anti-NMDAR encephalitis. Eur J Neurol. 2011;18(6):929–31.PubMedGoogle Scholar
  146. 146.
    Kahlfuß S, Simma N, Mankiewicz J, Bose T, Lowinus T, Klein-Hessling S, et al. Immunosuppression by N -methyl-d-aspartate receptor antagonists is mediated through inhibition of K v 1.3 and K Ca 3.1 channels in T cells. Mol Cell Biol. 2014;34(5):820–31.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Ozdemir C, Akdis M, Akdis CA. T regulatory cells and their counterparts: masters of immune regulation. Clin Exp Allergy. 2009;39:626–39.PubMedGoogle Scholar
  148. 148.
    Newcomb DC, Boswell MG, Zhou W, Huckabee MM, Goleniewska K, Sevin CM, et al. Human TH17 cells express a functional IL-13 receptor and IL-13 attenuates IL-17A production. J Allergy Clin Immunol. 2011;127(4):1006–13.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Varga Z, Csepany T, Papp F, Fabian A, Gogolak P, Toth A, et al. Potassium channel expression in human CD4+regulatory and naïve T cells from healthy subjects and multiple sclerosis patients. Immunol Lett. 2009;124(2):95–101.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Reneer MC, Estes DJ, Vélez-Ortega AC, Norris A, Mayer M, Marti F. Peripherally induced human regulatory T cells uncouple Kv1.3 activation from TCR-associated signaling. Eur J Immunol. 2011;41(11):3170–5.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Mahlios J, De la Herrán-Arita AK, Mignot E. The autoimmune basis of narcolepsy. Curr Opin Neurobiol. 2013;23:767–73.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Liblau RS. Put to sleep by immune cells. Nature. 2018;562(7725):46–8.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–85.Google Scholar
  154. 154.
    de Lecea L, Kilduff TS, Peyron C, Gao X-B, Foye PE, Danielson PE, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A. 1998;95(1):322–7.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Nevsimalova S, Pisko J, Buskova J, Kemlink D, Prihodova I, Sonka K, et al. Narcolepsy: clinical differences and association with other sleep disorders in different age groups. J Neurol. 2013;260(3):767–75.Google Scholar
  156. 156.
    Hartmann FJ, Bernard-Valnet R, Quériault C, Mrdjen D, Weber LM, Galli E, et al. High-dimensional single-cell analysis reveals the immune signature of narcolepsy. J Exp Med. 2016;213(12):2621–33.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Tafti M, Hor H, Dauvilliers Y, Lammers GJ, Overeem S, Mayer G, et al. DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep. 2014;37(1):19–U228.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Mignot E, Hayduk R, Grumet FC. Narcolepsy HLA DQB 1 ∗0602 is associated with cataplexy in 509 narcoleptic patients. Sleep. 2018;20(10):12–1020.Google Scholar
  159. 159.
    Tafti M, Lammers GJ, Dauvilliers Y, Overeem S, Mayer G, Nowak J, et al. Narcolepsy-associated HLA class I alleles implicate cell-mediated cytotoxicity. Sleep. 2016;39(3):581–7.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Ollila HM, Ravel JM, Han F, Faraco J, Lin L, Zheng X, et al. HLA-DPB1 and HLA class I confer risk of and protection from narcolepsy. Am J Hum Genet. 2015;96(1):136–46.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Han F, Faraco J, Dong XS, Ollila HM, Lin L, Li J, et al. Genome wide analysis of narcolepsy in China implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic. PLoS Genet. 2013;9(10) Scholar
  162. 162.
    Cvetkovic-Lopes V, Bayer L, Dorsaz S, Maret S, Pradervand S, Dauvilliers Y, et al. Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients. J Clin Invest. 2010;120(3):713–9.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Ahmed SS, Volkmuth W, Duca J, Corti L, Pallaoro M, Pezzicoli A, et al. Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Sci Transl Med. 2015;7(294):294ra105.Google Scholar
  164. 164.
    Bergman P, Adori C, Vas S, Kai-Larsen Y, Sarkanen T, Cederlund A, et al. Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns. Proc Natl Acad Sci. 2014;111(35):E3735–44.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Saariaho AH, Vuorela A, Freitag TL, Pizza F, Plazzi G, Partinen M, et al. Autoantibodies against ganglioside GM3 are associated with narcolepsy-cataplexy developing after Pandemrix vaccination against 2009 pandemic H1N1 type influenza virus. J Autoimmun. 2015;63:68–75.Google Scholar
  166. 166.
    Nguyen XH, Saoudi A, Liblau RS. Vaccine-associated inflammatory diseases of the central nervous system: from signals to causation. Curr Opin Neurol. 2016;29:362–71.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Liblau RS, Vassalli A, Seifinejad A, Tafti M. Hypocretin (orexin) biology and the pathophysiology of narcolepsy with cataplexy. Lancet Neurol. 2015;14(3):318–28.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Degn M, Kornum BR. Type 1 narcolepsy: a CD8+T cell-mediated disease? Ann N Y Acad Sci. 2015;1351(1):80–8.PubMedPubMedCentralGoogle Scholar
  169. 169.
    De la Herrán-Arita AK, García-García F. Narcolepsy as an immune-mediated disease. Sleep Disord. 2014;2014:1–6.Google Scholar
  170. 170.
    Latorre D, Kallweit U, Armentani E, Foglierini M, Mele F, Cassotta A, et al. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature. 2018;562:63–8.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Bernard-Valnet R, Yshii L, Quériault C, Nguyen X-H, Arthaud S, Rodrigues M, et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc Natl Acad Sci U S A. 2016;113(39):10956–61.PubMedPubMedCentralGoogle Scholar
  172. 172.
    Iijima N, Iwasaki A. Access of protective antiviral antibody to neuronal tissues requires CD4 T-cell help. Nature. 2016;533(7604):552–6.PubMedPubMedCentralGoogle Scholar
  173. 173.
    Lecendreux M, Churlaud G, Pitoiset F, Regnault A, Tran TA, Liblau R, et al. Narcolepsy type 1 is associated with a systemic increase and activation of regulatory T cells and with a systemic activation of global T cells. PLoS One. 2017;12(1) Scholar
  174. 174.
    Buckner JH. Mechanisms of impaired regulation by CD4+ CD25+ FOXP3+ regulatory T cells in human autoimmune diseases. Nat Rev Immunol. 2010;10:849–59.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Lindley S, Dayan CM, Bishop A, Roep BO, Peatman M, Tree TIM. Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes. 2005;54(1):92–9.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Brooke A. Keating
    • 1
  • Justin G. Lees
    • 1
  • Gila Moalem-Taylor
    • 1
    Email author
  1. 1.Neuropathic Pain Research Group, Translational Neuroscience FacilitySchool of Medical Sciences, University of New South Wales (UNSW)SydneyAustralia

Personalised recommendations