Autoimmune Limbic Encephalitis

  • Shahar Shelly
  • Ram Narayan
  • Divyanshu DubeyEmail author
Part of the Contemporary Clinical Neuroscience book series (CCNE)


Autoimmune encephalitis is now being widely recognized as a common and potentially treatable cause of encephalitis. The majority of the autoimmune encephalitis cases clinically present with limbic system dysfunction. Many neural autoantibody biomarkers of autoimmune limbic encephalitis have been described, and novel antibodies are being recognized every year. These antibodies are either directed against cell surface epitopes or intracellular antigens. Learning about the specific clinical presentations of autoimmune encephalitides, their pathophysiology, and cancer association is crucial for patient care. We highlight the typical clinical and radiological features of autoimmune limbic encephalitides. We also describe the treatment strategies and immunotherapy agents utilized.


Limbic Encephalitis Paraneoplastic Syndromes Anti-N-Methyl-D-Aspartate Receptor Encephalitis Antibodies Immunotherapy 


  1. 1.
    Dubey D, et al. Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann Neurol. 2018;83(1):166–77.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Papez JW. A proposed mechanism of emotion. 1937. J Neuropsychiatry Clin Neurosci. 1995;7(1):103–12.PubMedCrossRefGoogle Scholar
  3. 3.
    Bucy PC, Kluver H. An anatomical investigation of the temporal lobe in the monkey (Macaca mulatta). J Comp Neurol. 1955;103(2):151–251.PubMedCrossRefGoogle Scholar
  4. 4.
    Mac LP. Psychosomatic disease and the visceral brain; recent developments bearing on the Papez theory of emotion. Psychosom Med. 1949;11(6):338–53.CrossRefGoogle Scholar
  5. 5.
    Dubey D, Toledano M, McKeon A. Clinical presentation of autoimmune and viral encephalitides. Curr Opin Crit Care. 2018;24(2):80–90.PubMedCrossRefGoogle Scholar
  6. 6.
    Graus F, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016;15(4):391–404.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Granerod J, et al. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis. 2010;10(12):835–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Venkatesan A, et al. Case definitions, diagnostic algorithms, and priorities in encephalitis: consensus statement of the international encephalitis consortium. Clin Infect Dis. 2013;57(8):1114–28.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Dubey D, et al. Predictors of neural-specific autoantibodies and immunotherapy response in patients with cognitive dysfunction. J Neuroimmunol. 2018;323:62–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Dubey D, et al. The spectrum of autoimmune encephalopathies. J Neuroimmunol. 2015;287:93–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Jezequel J, et al. Dynamic disorganization of synaptic NMDA receptors triggered by autoantibodies from psychotic patients. Nat Commun. 2017;8(1):1791.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Johnson N, et al. Anti-NMDA receptor encephalitis causing prolonged nonconvulsive status epilepticus. Neurology. 2010;75(16):1480–2.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Viaccoz A, et al. Clinical specificities of adult male patients with NMDA receptor antibodies encephalitis. Neurology. 2014;82(7):556–63.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Gabilondo I, et al. Analysis of relapses in anti-NMDAR encephalitis. Neurology. 2011;77(10):996–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Irani SR, et al. N-methyl-D-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain. 2010;133(Pt 6):1655–67.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kelley BP, et al. Autoimmune encephalitis: pathophysiology and imaging review of an overlooked diagnosis. AJNR Am J Neuroradiol. 2017;38(6):1070–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Titulaer MJ, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol. 2013;12(2):157–65.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Armangue T, Leypoldt F, Dalmau J. Autoimmune encephalitis as differential diagnosis of infectious encephalitis. Curr Opin Neurol. 2014;27(3):361–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Schmitt SE, et al. Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology. 2012;79(11):1094–100.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Baykan B, et al. Delta brush pattern is not unique to NMDAR encephalitis: evaluation of two independent long-term EEG cohorts. Clin EEG Neurosci. 2018;49(4):278–84.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Mitra AD, Afify A. Ovarian teratoma associated Anti-N-methyl-D-aspartate receptor encephalitis: a difficult diagnosis with a favorable prognosis. Autops Case Rep. 2018;8(2):p. e2018019.CrossRefGoogle Scholar
  23. 23.
    Armangue T, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol. 2018;17:760.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hacohen Y, et al. N-methyl-D-aspartate receptor antibodies in post-herpes simplex virus encephalitis neurological relapse. Mov Disord. 2014;29(1):90–6.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Acien P, et al. Ovarian teratoma-associated anti-NMDAR encephalitis: a systematic review of reported cases. Orphanet J Rare Dis. 2014;9:157.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Dalmau J, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol. 2007;61(1):25–36.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Morales MJ, et al. A novel beta subunit increases rate of inactivation of specific voltage-gated potassium channel alpha subunits. J Biol Chem. 1995;270(11):6272–7.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Gutman GA, et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev. 2005;57(4):473–508.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    van Sonderen A, et al. The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis. Nat Rev Neurol. 2017;13(5):290–301.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Gadoth A, et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann Neurol. 2017;82(1):79–92.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Lopez-Chiriboga AS, et al. LGI1 and CASPR2 neurological autoimmunity in children. Ann Neurol. 2018;84(3):473–80.PubMedCrossRefGoogle Scholar
  32. 32.
    McQuillan RF, Bargman JM. Hyponatraemia caused by LGI1-associated limbic encephalitis. NDT Plus. 2011;4(6):424–6.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Irani SR, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol. 2011;69(5):892–900.PubMedCrossRefGoogle Scholar
  34. 34.
    Aurangzeb S, et al. LGI1-antibody encephalitis is characterised by frequent, multifocal clinical and subclinical seizures. Seizure. 2017;50:14–7.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Bakpa OD, Reuber M, Irani SR. Antibody-associated epilepsies: clinical features, evidence for immunotherapies and future research questions. Seizure. 2016;41:26–41.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Andrade DM, et al. Tonic seizures: a diagnostic clue of anti-LGI1 encephalitis? Neurology. 2011;76(15):1355–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Irani SR, et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain. 2013;136(Pt 10):3151–62.PubMedCrossRefGoogle Scholar
  38. 38.
    Hoftberger R, et al. Encephalitis and AMPA receptor antibodies: novel findings in a case series of 22 patients. Neurology. 2015;84(24):2403–12.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Dalmau J, Geis C, Graus F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev. 2017;97(2):839–87.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lai M, et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol. 2009;65(4):424–34.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Haselmann H, et al. Human autoantibodies against the AMPA receptor subunit GluA2 induce receptor reorganization and memory dysfunction. Neuron. 2018;100:91.PubMedCrossRefGoogle Scholar
  42. 42.
    Shelly S, et al. Thymoma and autoimmunity. Cell Mol Immunol. 2011;8(3):199–202.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Joubert B, et al. Clinical Spectrum of encephalitis associated with antibodies against the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor: case series and review of the literature. JAMA Neurol. 2015;72(10):1163–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Gleichman AJ, et al. Antigenic and mechanistic characterization of anti-AMPA receptor encephalitis. Ann Clin Transl Neurol. 2014;1(3):180–9.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Watanabe M, et al. GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol. 2002;213:1–47.PubMedCrossRefGoogle Scholar
  46. 46.
    Sigel E, Steinmann ME. Structure, function, and modulation of GABA(A) receptors. J Biol Chem. 2012;287(48):40224–31.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Lancaster E. The diagnosis and treatment of autoimmune encephalitis. J Clin Neurol. 2016;12(1):1–13.PubMedCrossRefGoogle Scholar
  48. 48.
    Petit-Pedrol M, et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol. 2014;13(3):276–86.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Quek AML, O’Toole O. Autoimmune epilepsy: the evolving science of neural autoimmunity and its impact on epilepsy management. Semin Neurol. 2018;38(3):290–302.PubMedCrossRefGoogle Scholar
  50. 50.
    Spatola M, et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology. 2017;88(11):1012–20.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Dalmau J, Graus F. Antibody-mediated encephalitis. N Engl J Med. 2018;378(9):840–51.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kaupmann K, et al. Human gamma-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+ channels. Proc Natl Acad Sci U S A. 1998;95(25):14991–6.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Emson PC. GABA(B) receptors: structure and function. Prog Brain Res. 2007;160:43–57.PubMedCrossRefGoogle Scholar
  54. 54.
    Rosenfeld MR, Titulaer MJ, Dalmau J. Paraneoplastic syndromes and autoimmune encephalitis: five new things. Neurol Clin Pract. 2012;2(3):215–23.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Boronat A, et al. GABA(B) receptor antibodies in limbic encephalitis and anti-GAD-associated neurologic disorders. Neurology. 2011;76(9):795–800.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Dubey D, et al. Effectiveness of multimodality treatment for autoimmune limbic epilepsy. Epileptic Disord. 2014;16(4):494–9.PubMedGoogle Scholar
  57. 57.
    Boronat A, et al. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol. 2013;73(1):120–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Hara M, et al. DPPX antibody-associated encephalitis: Main syndrome and antibody effects. Neurology. 2017;88(14):1340–8.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Bressers AA, et al. Autoimmune encephalitis due to mantle cell lymphoma. Ned Tijdschr Geneeskd. 2016;160:D394.PubMedGoogle Scholar
  60. 60.
    Spatola M, et al. Encephalitis with mGluR5 antibodies: symptoms and antibody effects. Neurology. 2018;90(22):e1964–72.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Mat A, et al. Ophelia syndrome with metabotropic glutamate receptor 5 antibodies in CSF. Neurology. 2013;80(14):1349–50.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lancaster E, et al. Antibodies to metabotropic glutamate receptor 5 in the Ophelia syndrome. Neurology. 2011;77(18):1698–701.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    McKeon A, Pittock SJ. Paraneoplastic encephalomyelopathies: pathology and mechanisms. Acta Neuropathol. 2011;122(4):381–400.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Dubey D, et al. Evaluation of positive and negative predictors of seizure outcomes among patients with immune-mediated epilepsy: a meta-analysis. Ther Adv Neurol Disord. 2016;9(5):369–77.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Pittock SJ, et al. Glutamic acid decarboxylase autoimmunity with brainstem, extrapyramidal, and spinal cord dysfunction. Mayo Clin Proc. 2006;81(9):1207–14.PubMedCrossRefGoogle Scholar
  66. 66.
    Peltola J, et al. Autoantibodies to glutamic acid decarboxylase in patients with therapy-resistant epilepsy. Neurology. 2000;55(1):46–50.PubMedCrossRefGoogle Scholar
  67. 67.
    Lucchinetti CF, Kimmel DW, Lennon VA. Paraneoplastic and oncologic profiles of patients seropositive for type 1 antineuronal nuclear autoantibodies. Neurology. 1998;50(3):652–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Eggers SD, et al. Paraneoplastic and metastatic neurologic complications of Merkel cell carcinoma. Mayo Clin Proc. 2001;76(3):327–30.PubMedCrossRefGoogle Scholar
  69. 69.
    Fisher PG, Wechsler DS, Singer HS. Anti-Hu antibody in a neuroblastoma-associated paraneoplastic syndrome. Pediatr Neurol. 1994;10(4):309–12.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Dalmau J, et al. Detection of the anti-Hu antibody in the serum of patients with small cell lung cancer--a quantitative western blot analysis. Ann Neurol. 1990;27(5):544–52.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Roberts WK, et al. Patients with lung cancer and paraneoplastic Hu syndrome harbor HuD-specific type 2 CD8+ T cells. J Clin Invest. 2009;119(7):2042–51.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Rudzinski LA, et al. Extratemporal EEG and MRI findings in ANNA-1 (anti-Hu) encephalitis. Epilepsy Res. 2011;95(3):255–62.PubMedCrossRefGoogle Scholar
  73. 73.
    Voltz R, et al. A serologic marker of paraneoplastic limbic and brain-stem encephalitis in patients with testicular cancer. N Engl J Med. 1999;340(23):1788–95.PubMedCrossRefGoogle Scholar
  74. 74.
    Rosenfeld MR, et al. Molecular and clinical diversity in paraneoplastic immunity to Ma proteins. Ann Neurol. 2001;50(3):339–48.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Dalmau J, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain. 2004;127(Pt 8):1831–44.PubMedCrossRefGoogle Scholar
  76. 76.
    Waragai M, et al. Anti-Ma2 associated paraneoplastic neurological syndrome presenting as encephalitis and progressive muscular atrophy. J Neurol Neurosurg Psychiatry. 2006;77(1):111–3.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Yu Z, et al. CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann Neurol. 2001;49(2):146–54.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Dubey D, et al. Autoimmune CRMP5 neuropathy phenotype and outcome defined from 105 cases. Neurology. 2018;90(2):e103–10.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Vernino S, et al. Paraneoplastic chorea associated with CRMP-5 neuronal antibody and lung carcinoma. Ann Neurol. 2002;51(5):625–30.PubMedCrossRefGoogle Scholar
  80. 80.
    Quek AM, et al. Autoimmune epilepsy: clinical characteristics and response to immunotherapy. Arch Neurol. 2012;69(5):582–93.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Tuzun E, et al. Adenylate kinase 5 autoimmunity in treatment refractory limbic encephalitis. J Neuroimmunol. 2007;186(1–2):177–80.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ng AS, et al. Clinico-pathological correlation in adenylate kinase 5 autoimmune limbic encephalitis. J Neuroimmunol. 2015;287:31–5.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Arya R, Anand V, Chansoria M. Hashimoto encephalopathy presenting as progressive myoclonus epilepsy syndrome. Eur J Paediatr Neurol. 2013;17(1):102–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Britton J. Autoimmune epilepsy. Handb Clin Neurol. 2016;133:219–45.PubMedCrossRefGoogle Scholar
  85. 85.
    Tocut M, Brenner R, Zandman-Goddard G. Autoimmune phenomena and disease in cancer patients treated with immune checkpoint inhibitors. Autoimmun Rev. 2018;17(6):610–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Fujinami RS, et al. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev. 2006;19(1):80–94.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Gresa-Arribas N, et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol. 2014;13(2):167–77.CrossRefGoogle Scholar
  88. 88.
    Ngankam L, Kazantseva NV, Gerasimova MM. Immunological markers of severity and outcome of traumatic brain injury. Zh Nevrol Psikhiatr Im S S Korsakova. 2011;111(7):61–5.PubMedGoogle Scholar
  89. 89.
    Mantegazza R, et al. Antibodies against GluR3 peptides are not specific for Rasmussen’s encephalitis but are also present in epilepsy patients with severe, early onset disease and intractable seizures. J Neuroimmunol. 2002;131(1–2):179–85.CrossRefGoogle Scholar
  90. 90.
    Bien CG, et al. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain. 2012;135(Pt 5):1622–38.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Basile AS, et al. IgG isolated from LP-BM5 infected mouse brain activates ionotropic glutamate receptors. Neurobiol Dis. 2001;8(6):1069–81.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Ohkawa T, et al. Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors. J Neurosci. 2013;33(46):18161–74.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Aysit-Altuncu N, et al. Effect of LGI1 antibody-positive IgG on hippocampal neuron survival: a preliminary study. Neuroreport. 2018;29(11):932–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Lai M, et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol. 2010;9(8):776–85.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Vogrig A, et al. Glioblastoma as differential diagnosis of autoimmune encephalitis. J Neurol. 2018;265(3):669–77.PubMedCrossRefGoogle Scholar
  96. 96.
    Tobin WO, Pittock SJ. Autoimmune neurology of the central nervous system. Continuum (Minneap Minn). 2017;23(3, Neurology of Systemic Disease):627–53.Google Scholar
  97. 97.
    Toledano M, et al. Utility of an immunotherapy trial in evaluating patients with presumed autoimmune epilepsy. Neurology. 2014;82(18):1578–86.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Shin YW, et al. Treatment strategies for autoimmune encephalitis. Ther Adv Neurol Disord. 2018;11:1756285617722347.PubMedGoogle Scholar
  99. 99.
    Lee WJ, et al. Tocilizumab in autoimmune encephalitis refractory to rituximab: an institutional cohort study. Neurotherapeutics. 2016;13(4):824–32.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Zhang C, et al. Safety and efficacy of bortezomib in patients with highly relapsing neuromyelitis optica spectrum disorder. JAMA Neurol. 2017;74(8):1010–2.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Chen D, et al. Inebilizumab, a B cell-depleting anti-CD19 antibody for the treatment of autoimmune neurological diseases: insights from preclinical studies. J Clin Med. 2016;5(12). pii: E107Google Scholar
  102. 102.
    Lopez-Chiriboga AS, et al. Association of MOG-IgG serostatus with relapse after acute disseminated encephalomyelitis and proposed diagnostic criteria for MOG-IgG-associated disorders. JAMA Neurol. 2018;75:1355.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Vodopivec I, et al. A neurologist’s guide to safe use of immunomodulatory therapies. Semin Neurol. 2014;34(4):467–78.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Das G, et al. Rituximab before and during pregnancy: a systematic review, and a case series in MS and NMOSD. Neurol Neuroimmunol Neuroinflamm. 2018;5(3):e453.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Neurology, Mayo ClinicRochesterUSA
  2. 2.Department of Laboratory Medicine and Pathology, Mayo ClinicRochesterUSA
  3. 3.Deapartment of Neurology, Barrows Neurological InstitutePhoenixUSA

Personalised recommendations