Some Remarks About Polynomial Aggregation Functions

  • Sebastia MassanetEmail author
  • Juan Vicente Riera
  • Joan Torrens
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 981)


There exist a great quantity of aggregation functions at disposal to be used in different applications. The choice of one of them over the others in each case depends on many factors. In particular, in order to have an easier implementation, the selected aggregation is required to have an expression as simple as possible. In this line, aggregation functions given by polynomial expressions were investigated in [22]. In this paper we continue this investigation focussing on binary aggregation functions given by polynomial expressions only in a particular sub-domain of the unit square. Specifically, splitting the unit square by using the classical negation, the aggregation function is given by a polynomial of degree one or two in one of the sub-domains and by 0 (or 1) in the other sub-domain. This is done not only in general, but also requiring some additional properties like idempotency, commutativity, associativity, neutral (or absorbing) element and so on, leading to some families of binary polynomial aggregation functions with a non-trivial 0 (or 1) region.


Aggregation functions Polynomial functions Classical negation 



This paper has been partially supported by the Spanish Grant TIN2016-75404-P AEI/FEDER, UE.


  1. 1.
    Alsina, C., Frank, M.J., Schweizer, B.: Associative Functions: Triangular Norms and Copulas. Kluwer Academic Publishers, Dordrecht (2000)zbMATHGoogle Scholar
  2. 2.
    Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing, vol. 231. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  3. 3.
    Baczyński, M., Jayaram, B., Massanet, S., Torrens, J.: Fuzzy implications: past, present, and future. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 183–202. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  4. 4.
    Beliakov, G., Bustince Sola, H., Calvo Sánchez, T.: A Practical Guide to Averaging Functions. Studies in Fuzziness and Soft Computing, vol. 329. Springer, Heidelberg (2016)Google Scholar
  5. 5.
    Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Studies in Fuzziness and Soft Computing, vol. 221. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  6. 6.
    Calvo, T., De Baets, B., Fodor, J.: The functional equation of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120, 385–394 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Calvo, T., Mayor, G., Mesiar, R.: Aggregation Operators: New Trends and Applications. Studies in Fuzziness and Soft Computing. Physica-Verlag, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Durante, F., Klement, E.P., Mesiar, R., Sempi, C.: Conjunctors and their residual implicators: characterizations and construction methods. Mediterr. J. Math. 4, 343–356 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fodor, J.C.: On rational uninorms. In: Proceedings of the First Slovakian–Hungarian Joint Symposium on Applied Machine Intelligence, Herlany, Slovakia, pp. 139–147 (2003)Google Scholar
  10. 10.
    Fodor, J., Yager, R.R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness 5, 411–427 (1997)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gottwald, S.: A Treatise on Many-Valued Logic. Research Studies Press, Baldock (2001)zbMATHGoogle Scholar
  12. 12.
    Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions (Encyclopedia of Mathematics and Its Applications), 1st edn. Cambridge University Press, New York (2009)CrossRefGoogle Scholar
  13. 13.
    Kerre, E.E., Huang, C., Ruan, D.: Fuzzy Set Theory and Approximate Reasoning. Wu Han University Press, Wu Chang (2004)Google Scholar
  14. 14.
    Kerre, E.E., Nachtegael, M.: Fuzzy Techniques in Image Processing. Studies in Fuzziness and Soft Computing, vol. 52. Springer, New York (2000)CrossRefGoogle Scholar
  15. 15.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  16. 16.
    Mas, M., Mayor, G., Torrens, J.: t-Operators. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 7(1), 31–50 (1999)CrossRefGoogle Scholar
  17. 17.
    Mas, M., Massanet, S., Ruiz-Aguilera, D., Torrens, J.: A survey on the existing classes of uninorms. J. Intell. Fuzzy Syst. 29, 1021–1037 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15(6), 1107–1121 (2007)CrossRefGoogle Scholar
  19. 19.
    Massanet, S., Riera, J.V., Ruiz-Aguilera, D.: On fuzzy polynomial implications. In: Laurent, A., et al. (eds.) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Communications in Computer and Information Science, vol. 442, pp. 138–147. Springer, Heidelberg (2014)Google Scholar
  20. 20.
    Massanet, S., Riera, J.V., Ruiz-Aguilera, D.: On (OP)-polynomial implications. In: Alonso, J.M., Bustince, H., Reformat, M. (eds.) Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT 2015), pp. 1208–1215. Atlantis Press (2015)Google Scholar
  21. 21.
    Massanet, S., Riera, J.V., Ruiz-Aguilera, D.: On rational fuzzy implication functions. In: Proceedings of IEEE World Congress on Computational Intelligence (IEEE WCCI), pp. 272–279 (2016)Google Scholar
  22. 22.
    Massanet, S., Riera, J.V., Torrens, J.: Aggregation functions given by polynomial functions. In: Proceedings of IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2017), Naples, Italy, pp. 1–6 (2017).
  23. 23.
    Nelsen, R.B.: An Introduction to Copulas. Springer, New York (2006)zbMATHGoogle Scholar
  24. 24.
    Pradera, A., Beliakov, G., Bustince, H., De Baets, B.: A review of the relationships between implication, negation and aggregation functions from the point of view of material implication. Inf. Sci. 329, 357–380 (2016). Special issue on Discovery ScienceCrossRefGoogle Scholar
  25. 25.
    Pradera, A., Massanet, S., Ruiz-Aguilera, D., Torrens, J.: The non-contradiction principle related to natural negations of fuzzy implication functions. Fuzzy Sets Syst. 359, 3–21 (2019)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation Operators. Cognitive Technologies. Springer, Heidelberg (2007)Google Scholar
  27. 27.
    Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80, 111–120 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.SCOPIA Research Group, Department of Mathematics and Computer ScienceUniversity of the Balearic IslandsPalmaSpain
  2. 2.Balearic Islands Health Research Institute (IdISBa)PalmaSpain

Personalised recommendations