Advertisement

Ordinal Sums of t-norms and t-conorms on Bounded Lattices

  • Antonín DvořákEmail author
  • Michal Holčapek
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 981)

Abstract

This contribution extends a recently proposed novel approach to ordinal sum constructions of t-norms and t-conorms on bounded lattices that are determined by interior and closure operators. The extension lies in a possibility to consider also infinite sets of indices.

Keywords

t-norms t-conorms Bounded lattices Ordinal sum 

References

  1. 1.
    De Baets, B., Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets Syst. 104, 61–75 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Birkhoff, G.: Lattice Theory. American Mathematical Society, Providence (1973)Google Scholar
  3. 3.
    Çayli, G.D.: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets Syst. 332, 129–143 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Clifford, A.H.: Naturally totally ordered commutative semigroups. Am. J. Math. 76, 631–646 (1954)MathSciNetCrossRefGoogle Scholar
  5. 5.
    De Cooman, G., Kerre, E.E.: Order norms on bounded partially ordered sets. J. Fuzzy Math. 2, 281–310 (1994)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Deschrijver, G., Cornelis, C., Kerre, E.E.: On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE Trans. Fuzzy Syst. 12, 45–61 (2004)CrossRefGoogle Scholar
  7. 7.
    Dvořák, A., Holčapek, M.: New construction of an ordinal sum of t-norms and t-conorms on bounded lattices. Inf. Sci. (2019, submitted)Google Scholar
  8. 8.
    Ertuǧrul, U., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Syst. 30, 807–817 (2015)CrossRefGoogle Scholar
  9. 9.
    Goguen, J.A.: \(L\)-fuzzy sets. J. Math. Anal. Appl. 18, 145–174 (1967)Google Scholar
  10. 10.
    Grätzer, G.: General Lattice Theory. Academic Press, New York, London (1978)CrossRefGoogle Scholar
  11. 11.
    Grätzer, G.: Lattice Theory: Foundation. Birkhäuser, Basel (2011)CrossRefGoogle Scholar
  12. 12.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, Trends in Logic, vol. 8. Kluwer, Dordrecht (2000)CrossRefGoogle Scholar
  13. 13.
    Medina, J.: Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices. Fuzzy Sets Syst. 202, 75–88 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mostert, P.S., Shields, A.L.: On the structure of semigroups on a compact manifold with boundary. Ann. Math. Second Ser. 65, 117–143 (1957)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rutherford, D.E.: Introduction to Lattice Theory. Oliver & Boyd, Edinburgh and London (1965)zbMATHGoogle Scholar
  16. 16.
    Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157, 1403–1416 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Saminger-Platz, S., Klement, E.P., Mesiar, R.: On extensions of triangular norms on bounded lattices. Indag. Math.-New Ser. 19, 135–150 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York (1983)zbMATHGoogle Scholar
  19. 19.
    Szász, G.: Introduction to Lattice Theory. Academic Press, New York and London (1963)zbMATHGoogle Scholar
  20. 20.
    Zhang, D.: Triangular norms on partially ordered sets. Fuzzy Sets Syst. 153, 195–209 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Research and Applications of Fuzzy Modeling, CE IT4InnovationsUniversity of OstravaOstravaCzech Republic

Personalised recommendations