On Some Properties of Generalized Convex Combination of Triangular Norms

  • Funda KaraçalEmail author
  • M. Nesibe Kesicioğlu
  • Ümit Ertuğrul
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 981)


In this paper, we define linear and generalized convex combination of triangular norms on bounded lattice. We investigate its some algebraic properties like unit element and zero-divisor element by putting some conditions.


Triangular norm Triangular conorm Linear combination Convex combination Bounded lattice 


  1. 1.
    Alsina, C., Frank, M.J., Schweizer, B.: Problems on associative functions. Aequationes Math. 66(1–2), 128–140 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing, vol. 231. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  3. 3.
    Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publishers, Providence (1967)zbMATHGoogle Scholar
  4. 4.
    Durante, F., Sarkoci, P.: A note on the convex combinations of triangular norms. Fuzzy Sets Syst. 159, 77–80 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Syst. 30, 807–817 (2015)CrossRefGoogle Scholar
  6. 6.
    Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  7. 7.
    Jenei, S.: On the convex combination of left-continuous t-norms. Aequationes Math. 72(1–2), 47–59 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Karaçal, F.: On the direct decomposability of strong negations and S-implication operators on product lattices. Inf. Sci. 176, 3011–3025 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Karaçal, F., Kesicioğlu, M.N.: A T-partial order obtained from t-norms. Kybernetika 47, 300–314 (2011)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  11. 11.
    Menger, K.: Statistical metrics. Proc. Natl. Acad. Sci. USA 8, 535–537 (1942)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mesiar, R., Mesiarová-Zemánková, A.: Convex combinations of continuous t-norms with the same diagonal function. Nonlinear Anal. 69(9), 2851–2856 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ouyang, Y., Fang, J.: Some observations about the convex combinations of continuous triangular norms. Nonlinear Anal. 69(11), 3382–3387 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Schweizer, B., Sklar, A.: Espaces metriques aléatoires. C.R. Acad. Sci. Paris Sér. A. 247 2092–2094 (1958)Google Scholar
  15. 15.
    Schweizer, B., Sklar, A.: Statistical metric spaces. Pac. J. Math. 10, 313–334 (1960)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsKaradeniz Technical UniversityTrabzonTurkey
  2. 2.Department of MathematicsRecep Tayyip Erdoğan UniversityRizeTurkey

Personalised recommendations