Advertisement

Penalty-Based Aggregation of Strings

  • Raúl Pérez-FernándezEmail author
  • Bernard De Baets
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 981)

Abstract

Whereas the field of aggregation theory has historically studied aggregation on bounded posets (mainly the aggregation of real numbers), different aggregation processes have been analysed in different fields of application. In particular, the aggregation of strings has been a popular topic in many fields featuring computer science and bioinformatics. In this conference paper, we discuss different examples of aggregation of strings and position them within the framework of penalty-based data aggregation.

Keywords

Aggregation Strings Penalty functions 

Notes

Acknowledgments

Raúl Pérez-Fernández acknowledges the support of the Research Foundation of Flanders (FWO17/PDO/160) and the Spanish MINECO (TIN2017-87600-P).

References

  1. 1.
    Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection problems. Inf. Comput. 185, 41–55 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)Google Scholar
  3. 3.
    Nicolas, F., Rivals, E.: Complexities of the centre and median string problems. In: Proceedings of the 14th Annual Conference on Combinatorial Pattern Matching, pp. 315–327. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Gagolewski, M.: Data Fusion. Theory, Methods and Applications. Institute of Computer Science, Polish Academy of Sciences, Warsaw (2015)Google Scholar
  5. 5.
    Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Phys. Doklady 10(8), 707–710 (1966)MathSciNetGoogle Scholar
  7. 7.
    Pérez-Fernández, R., De Baets, B.: On the role of monometrics in penalty-based data aggregation. IEEE Trans. Fuzzy Syst. (in press).  https://doi.org/10.1109/TFUZZ.2018.2880716
  8. 8.
    Yager, R.R.: Toward a general theory of information aggregation. Inf. Sci. 68, 191–206 (1993)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Calvo, T., Beliakov, G.: Aggregation functions based on penalties. Fuzzy Sets Syst. 161, 1420–1436 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bustince, H., Beliakov, G., Dimuro, G.P., Bedregal, B., Mesiar, R.: On the definition of penalty functions in data aggregation. Fuzzy Sets Syst. 323, 1–18 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Owen, S.H., Daskin, M.S.: Strategic facility location: a review. Eur. J. Oper. Res. 111, 423–447 (1998)CrossRefGoogle Scholar
  12. 12.
    Li, M., Ma, B., Wang, L.: On the closest string and substring problems. J. ACM 49(2), 157–171 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems. In: Vingron, M., Wong, L. (eds.) Research in Computational Molecular Biology, pp. 396–409. Springer, Berlin (2008)CrossRefGoogle Scholar
  14. 14.
    Fishburn, P.C.: Lexicographic orders, utilities and decision rules: a survey. Manag. Sci. 20(11), 1442–1471 (1974)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (2009)Google Scholar
  16. 16.
    Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Heidelberg (2009)Google Scholar
  17. 17.
    Damerau, F.J.: A technique for computer detection and correction of spelling errors. Commun. ACM 7(3), 171–176 (1964)CrossRefGoogle Scholar
  18. 18.
    Kohonen, T.: Median strings. Pattern Recogn. Lett. 3, 309–313 (1985)CrossRefGoogle Scholar
  19. 19.
    Jaccard, P.: The distribution of the flora in the Alpine zone. New Phytol. 11(2), 37–50 (1912)CrossRefGoogle Scholar
  20. 20.
    Jaro, M.A.: Advances in record-linkage methodology as applied to matching the 1985 census of Tampa, Florida. J. Am. Stat. Assoc. 84, 414–420 (1989)Google Scholar
  21. 21.
    Winkler, W.E.: String comparator metrics and enhanced decision rules in the Fellegi-Sunter model of record linkage. In: Proceedings of the Section on Survey Research Methods of the American Statistical Association, pp. 354–359 (1990)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.KERMIT, Department of Data Analysis and Mathematical ModellingGhent UniversityGhentBelgium
  2. 2.Department of Statistics and O.R. and Mathematics DidacticsUniversity of OviedoOviedoSpain

Personalised recommendations