Methods for Nonlinearly Constrained Problems

  • H. A. Eiselt
  • Carl-Louis Sandblom
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 282)


As opposed to the previous chapter, the methods presented in this chapter allow the given constraints to be nonlinear. In the first section of this chapter, we consider problems with convex constraints, starting with the cutting plane method for nonlinear programming due to Kelley (1960). Although Kelley’s method suffers from a numerically slow convergence in comparison with other methods (except possibly for highly nonlinear constraints), we cover it here because of the considerable theoretical interest of the cutting plane principle. We continue with the generalized reduced gradient (GRG) method, which may be regarded as a standard technique for convex differentiable programming. Techniques for handling nondifferentiable functions using subgradients as well as methods for concave objective functions are then described.


  1. Abadie J, Carpentier J (1969) Generalization of the Wolfe reduced gradient method to the case of nonlinear constraints. In: Fletcher R (ed.) Optimization. Academic Press, New York, pp. 37-47Google Scholar
  2. Agmon S (1954) The relaxation method for linear inequalities. Canadian Journal of Mathematics 6: 382-392MathSciNetCrossRefGoogle Scholar
  3. Alizadeh F, Goldfarb D (2003) Second-order cone programming. Mathematical Programming 95: 3-51MathSciNetCrossRefGoogle Scholar
  4. Anjos MF, Lasserre JB (2012) Introduction to semidefinite, conic, and polynomial optimziation. pp 1-22 in Anjos MF, Lasserre JB (eds.) Handbook on semidefinite, conic, and polynomial optimization. Springer, New YorkCrossRefGoogle Scholar
  5. Bazaraa MS, Sherali HD, Shetty CM (2013) Nonlinear programming: theory and algorithms. (3rd ed.) Wiley, New YorkzbMATHGoogle Scholar
  6. Bertsekas DP (2015) Convex optimization algorithms. Athena Scientific, Belmont, MAzbMATHGoogle Scholar
  7. Bertsekas DP (2016) Nonlinear programming. (3rd ed.) Athena Scientific, Belmont, MAzbMATHGoogle Scholar
  8. Boyd S, Vandenberghe L, (2004) Convex optimization. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  9. Cornuejols G, Tütüncü R (2007) Optimization methods in finance. Cambridge University Press, Cambridge, UKzbMATHGoogle Scholar
  10. Cottle RW, Pang JS, Stone RE (2009) The linear complementarity problem. Classics in Applied Mathematics, SIAM, PhiladelphiaCrossRefGoogle Scholar
  11. Cottle RW, Thapa MN (2017) Linear and nonlinear optimization. Springer-Verlag, Berlin-Heidelberg-New YorkCrossRefGoogle Scholar
  12. Eiselt HA, Pederzoli G, Sandblom C-L (1987) Continuous optimization models. De Gruyter, Berlin-New YorkGoogle Scholar
  13. Eiselt HA, Sandblom C-L (2000) Integer programming and network models. Springer-Verlag, Berlin-Heidelberg-New YorkCrossRefGoogle Scholar
  14. Eiselt HA, Sandblom C-L (2007) Linear programming and its applications. Springer-Verlag, Berlin-HeidelbergzbMATHGoogle Scholar
  15. Fukushima M (1984) A descent algorithm for nonsmooth convex optimization. Mathematical Programming 30: 163-175MathSciNetCrossRefGoogle Scholar
  16. Gomory RE (1963) An algorithm for integer solutions to linear programs. In Graves RL, Wolfe P (eds.) Recent advances in mathematical programming: pp. 269-302. McGraw-Hill, New YorkGoogle Scholar
  17. Goffin JL (1977) On the convergence rates of subgradient optimization methods. Mathematical Programming 13: 329-347MathSciNetCrossRefGoogle Scholar
  18. Held M, Wolfe P, Crowder HP (1974) Validation of subgradient optimization. Mathematical Programming 6: 62-88MathSciNetCrossRefGoogle Scholar
  19. Hendrix EMT, G.-Tóth B (2010) Introduction to nonlinear and global optimization. Springer-Verlag, Gerlin-Heidelberg-New YorkGoogle Scholar
  20. Hitchcock FL (1941) The distribution of a product from several sources to numerous localities. Journal of Mathematical Physics 20: 224-230MathSciNetCrossRefGoogle Scholar
  21. Horst R, Pardalos PM, Thoai NV (2000) Introduction to global optimization, vol. 2. Kluwer, Dordrecht, The NetherlandsCrossRefGoogle Scholar
  22. Jahn J (2007) Introduction to the theory of nonlinear optimization. (3rd ed.), Springer-Verlag, Berlin-Heidelberg-New YorkzbMATHGoogle Scholar
  23. Kelley JE (1960) The cutting-plane method for solving convex programs. SIAM Journal 8: 703-712MathSciNetzbMATHGoogle Scholar
  24. Kiwiel, KC (1983) An aggregate subgradient method for nonsmooth convex minimization. Mathematical Programming 27: 320-341MathSciNetCrossRefGoogle Scholar
  25. Lemarechal C (1975) An extension of Davidon methods to nondifferentiable problems. Mathematical Programming Study 3: 95-109CrossRefGoogle Scholar
  26. Luenberger DL, Ye Y (2008) Linear and nonlinear programming. (3rd ed.) Springer-Verlag, Berlin-Heidelberg-New YorkCrossRefGoogle Scholar
  27. Mifflin R (1982) A modification and an extension of Lemarechal’s algorithm for nonsmooth minimization. Mathematical Programming Study 17: 77-90MathSciNetCrossRefGoogle Scholar
  28. Motzkin TS, Sch­nberg IJ (1954) The relaxation method for linear inequalities. Canadian Journal of Mathematics 6: 393-404MathSciNetCrossRefGoogle Scholar
  29. Nemirovski A (2007) Advances in convex optimization: conic programming. Proceedings of the International Congress of Mathematics, Madrid 2006. European Mathematical Society: 413-444Google Scholar
  30. Neumann K (1975) Operations Research Verfahren, Band 1. C. Hanser Verlag, München-WienGoogle Scholar
  31. Nocedal J, Wright SJ (2006) Numerical optimization (2nd ed.). Springer-Verlag, Berlin-Heidelberg-New YorkGoogle Scholar
  32. Pang JS (1995) Complementarity problems. In Horst R, Pardalos PM (eds.) Handbook of global optimization. Nonconvex optimization and its applications, vol 2. Springer, Boston, MA, pp. 271-338Google Scholar
  33. Polyak BT (1967) A general method of solving extremum problems. Soviet Mathematics Doklady 8: 593-597 (translated from the Russian)zbMATHGoogle Scholar
  34. Polyak BT (1969) Minimization of unsmooth functionals. USSR Computational Mathematics and Mathematical Physics 9: 509-521 (translated from the Russian)Google Scholar
  35. Sandblom C-L (1980) Two approaches to nonlinear decomposition. Mathematische Operationsforschung und Statistik, Series Optimization 11: 273-285MathSciNetCrossRefGoogle Scholar
  36. Shor Z (1964) On the structure of algorithms for the numerical solution of optimal planning and design problems. Dissertation, Cybernetics Institute, Kiev, UkraineGoogle Scholar
  37. Sun W, Yuan Y (2006) Optimization theory and methods. Nonlinear programming. Springer-Verlag, Berlin-Heidelberg-New YorkzbMATHGoogle Scholar
  38. Tuy H (1995) D.C. optimization theory, methods and algorithms. In Horst R, Pardalos P (eds.) Handbook of global optimization. Kluwer, Boston, MAGoogle Scholar
  39. Tuy H (1998) Convex analysis and global optimization. Kluwer, Boston, MACrossRefGoogle Scholar
  40. Tuy H (2005) Polynomial optimization: a robust approach. Pacific Journal of Optimization 1: 257-274MathSciNetzbMATHGoogle Scholar
  41. Tuy H, Al-Khayyal F, Thach PT (2005) Monotonic optimization: branch-and-cut methods. In: Audet C, Hansen P, Savard G (eds.) (2005) Surveys in global optimization. Springer, Berlin-Heidelberg-New YorkzbMATHGoogle Scholar
  42. Vandenberghe L, Boyd S (1996) Semidefinite programming. SIAM Review 38: 49-95MathSciNetCrossRefGoogle Scholar
  43. Wolfe P (1963) Methods of nonlinear programming. pp. 67-86 in Graves RL, Wolfe P (eds.) Recent advances in mathematical programming. McGraw Hill, New YorkzbMATHGoogle Scholar
  44. Wolfe P (1970) Convergence theory in nonlinear programming. pp. 1-36 in Abadie J (ed.) Integer and nonlinear programming. North Holland, AmsterdamGoogle Scholar
  45. Wolfe P (1975) A method of conjugate subgradients for minimizing nondifferentiable functions. Mathematical Programming Study 3: 145-173MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • H. A. Eiselt
    • 1
  • Carl-Louis Sandblom
    • 2
  1. 1.Faculty of ManagementUniversity of New BrunswickFrederictonCanada
  2. 2.Department of Industrial EngineeringDalhousie UniversityHalifaxCanada

Personalised recommendations