Advertisement

Starch Nanoparticles and Nanocrystals as Bioactive Molecule Carriers

  • Cristian C. VillaEmail author
  • Leidy T. Sanchez
  • N. David Rodriguez-Marin
Chapter

Abstract

Starch nanoparticles and nanocrystals are small materials with high surface-to-volume ratio, which allows them to pass through biological barriers and encapsulate different types of bioactive molecules. Due to their biocompability, wide array of natural sources and its ease modification through physical, chemical and enzymatic methods, starch nanomaterials have generated a great interest in the food, agricultural, cosmetic and pharmaceutical industries. In recent year, research into nanoencapsulation of bioactive molecules in starch nanomaterials and their application in different agri-food fields has grown substantially. The objective of this chapter was to review and analyze the different advances in this research area.

Keyword

Nanoencapsulation 

Notes

Acknowledgements

The authors would like to thank the Vicerrectoria de Investigaciones, Facultad de Ciencias Basicas y Tecnologias, Programa de Química and Programa de Ingeniería de Alimentos from Universidad del Quindio, for their support.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ab’lah Norul, N., Venkata, N. K., & Wong, T. W. (2018). Development of resistant corn starch for use as an oral colon-specific nanoparticulate drug carrier. Pure and Applied Chemistry, 90(6), 1073–1084.  https://doi.org/10.1515/pac-2017-0806.CrossRefGoogle Scholar
  2. Acevedo-Guevara, L., Nieto-Suaza, L., Sanchez, L. T., Pinzon, M. I., & Villa, C. C. (2018). Development of native and modified banana starch nanoparticles as vehicles for curcumin. International Journal of Biological Macromolecules, 111, 498–504.  https://doi.org/10.1016/j.ijbiomac.2018.01.063.CrossRefPubMedGoogle Scholar
  3. Ahmad, M., Mudgil, P., Gani, A., Hamed, F., Masoodi, F. A., & Maqsood, S. (2019). Nano-encapsulation of catechin in starch nanoparticles: Characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chemistry, 270, 95–104.  https://doi.org/10.1016/j.foodchem.2018.07.024.CrossRefPubMedGoogle Scholar
  4. Anand, P., Kunnumakkara, A. B., Newman, R. A., & Aggarwal, B. B. (2007). Bioavailability of curcumin: Problems and promises. Molecular Pharmaceutics, 4(6), 807–818.  https://doi.org/10.1021/mp700113r.CrossRefPubMedGoogle Scholar
  5. Ashogbon, A. O., & Akintayo, E. T. (2013). Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch–Stärke, 66(1–2), 41–57.  https://doi.org/10.1002/star.201300106.CrossRefGoogle Scholar
  6. Ballard, J. M., Zhu, L., Nelson, E. D., & Seburg, R. A. (2007). Degradation of vitamin D3 in a stressed formulation: The identification of esters of vitamin D3 formed by a transesterification with triglycerides. Journal of Pharmaceutical and Biomedical Analysis, 43(1), 142–150.  https://doi.org/10.1016/j.jpba.2006.06.036.CrossRefPubMedGoogle Scholar
  7. Chin, S. F., Mohd Yazid, S. N. A., & Pang, S. C. (2014). Preparation and characterization of starch nanoparticles for controlled release of curcumin. International Journal of Polymer Science, 2014(8), 1–8.  https://doi.org/10.1155/2014/340121.CrossRefGoogle Scholar
  8. Dai, L., Li, C., Zhang, J., & Cheng, F. (2018). Preparation and characterization of starch nanocrystals combining ball milling with acid hydrolysis. Carbohydrate Polymers, 180, 122–127.  https://doi.org/10.1016/j.carbpol.2017.10.015.CrossRefPubMedGoogle Scholar
  9. de Oliveira, N. R., Fornaciari, B., Mali, S., & Carvalho, G. M. (2017). Acetylated starch-based nanoparticles: Synthesis, characterization, and studies of interaction with antioxidants. Starch–Stärke, 70(3–4), 1700170.  https://doi.org/10.1002/star.201700170.CrossRefGoogle Scholar
  10. El-Naggar, M. E., El-Rafie, M. H., El-sheikh, M. A., El-Feky, G. S., & Hebeish, A. (2015). Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles. International Journal of Biological Macromolecules, 81, 718–729.  https://doi.org/10.1016/j.ijbiomac.2015.09.005.CrossRefPubMedGoogle Scholar
  11. Farrag, Y., Ide, W., Montero, B., Rico, M., Rodríguez-Llamazares, S., Barral, L., & Bouza, R. (2018). Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. International Journal of Biological Macromolecules, 114, 426–433.  https://doi.org/10.1016/j.ijbiomac.2018.03.134.CrossRefPubMedGoogle Scholar
  12. Gutiérrez, T. J., Guarás, M. P., & Alvarez, V. A. (2017). Reactive extrusion for the production of starch-based biopackaging. In M. A. Masuelli (Ed.), Biopackaging (pp. 287–315). Miami., EE.UU. ISBN: 978–1–4987-4968-8: Editorial CRC Press Taylor & Francis Group.Google Scholar
  13. Hao, Y., Chen, Y., Li, Q., & Gao, Q. (2018). Preparation of starch nanocrystals through enzymatic pretreatment from waxy potato starch. Carbohydrate Polymers, 184, 171–177.  https://doi.org/10.1016/j.carbpol.2017.12.042.CrossRefPubMedGoogle Scholar
  14. Hasanvand, E., Fathi, M., & Bassiri, A. (2018). Production and characterization of vitamin D3 loaded starch nanoparticles: Effect of amylose to amylopectin ratio and sonication parameters. Journal of Food Science and Technology, 55(4), 1314–1324.  https://doi.org/10.1007/s13197-018-3042-0.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hasanvand, E., Fathi, M., Bassiri, A., Javanmard, M., & Abbaszadeh, R. (2015). Novel starch based nanocarrier for vitamin D fortification of milk: Production and characterization. Food and Bioproducts Processing, 96, 264–277.  https://doi.org/10.1016/j.fbp.2015.09.007.CrossRefGoogle Scholar
  16. Hoyos-Leyva, J. D., Bello-Pérez, L. A., Alvarez-Ramirez, J., & Garcia, H. S. (2018). Microencapsulation using starch as wall material: A review. Food Reviews International, 34(2), 148–161.  https://doi.org/10.1080/87559129.2016.1261298.CrossRefGoogle Scholar
  17. Hui, W., Tao, F., Haining, Z., Zhimin, X., Ran, Y., & Min, S. (2018). A review on patents of starch nanoparticles: Preparation, applications, and development. Recent Patents on Food, Nutrition & Agriculture, 9(1), 23–30.  https://doi.org/10.2174/2212798410666180321101446.CrossRefGoogle Scholar
  18. Jordan, V. C. (2016). A retrospective: On clinical studies with 5-fluorouracil. Cancer Research, 76(4), 767–768.  https://doi.org/10.1158/0008-5472.can-16-0150.CrossRefPubMedGoogle Scholar
  19. Kaur, J., Kaur, G., Sharma, S., & Jeet, K. (2018). Cereal starch nanoparticles—A prospective food additive: A review. Critical Reviews in Food Science and Nutrition, 58(7), 1097–1107.  https://doi.org/10.1080/10408398.2016.1238339.CrossRefPubMedGoogle Scholar
  20. Kim, H.-Y., Park, S. S., & Lim, S.-T. (2015). Preparation, characterization and utilization of starch nanoparticles. Colloids and Surfaces B: Biointerfaces, 126, 607–620.  https://doi.org/10.1016/j.colsurfb.2014.11.011.CrossRefPubMedGoogle Scholar
  21. Le Corre, D., Bras, J., & Dufresne, A. (2010). Starch nanoparticles: A Review. Biomacromolecules, 11(5), 1139–1153.  https://doi.org/10.1021/bm901428y.CrossRefPubMedGoogle Scholar
  22. LeCorre, D., Bras, J., & Dufresne, A. (2011). Influence of botanic origin and amylose content on the morphology of starch nanocrystals. Journal of Nanoparticle Research, 13(12), 7193–7208.  https://doi.org/10.1007/s11051-011-0634-2.CrossRefGoogle Scholar
  23. LeCorre, D., Vahanian, E., Dufresne, A., & Bras, J. (2012b). Enzymatic pretreatment for preparing starch nanocrystals. Biomacromolecules, 13(1), 132–137.  https://doi.org/10.1021/bm201333k.CrossRefPubMedGoogle Scholar
  24. LeCorre, D. S., Bras, J., & Dufresne, A. (2012a). Influence of the botanic origin of starch nanocrystals on the morphological and mechanical properties of natural rubber nanocomposites. Macromolecular Materials and Engineering, 297(10), 969–978.  https://doi.org/10.1002/mame.201100317.CrossRefGoogle Scholar
  25. Ma, X., Jian, R., Chang, P. R., & Yu, J. (2008). Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules, 9(11), 3314–3320.  https://doi.org/10.1021/bm800987c.CrossRefPubMedGoogle Scholar
  26. Maghsoudi, A., Yazdian, F., Shahmoradi, S., Ghaderi, L., Hemati, M., & Amoabediny, G. (2017). Curcumin-loaded polysaccharide nanoparticles: Optimization and anticariogenic activity against Streptococcus mutans. Materials Science and Engineering: C, 75, 1259–1267.  https://doi.org/10.1016/j.msec.2017.03.032.CrossRefGoogle Scholar
  27. Mahmoodani, F., Perera, C. O., Fedrizzi, B., Abernethy, G., & Chen, H. (2017). Degradation studies of cholecalciferol (vitamin D3) using HPLC-DAD, UHPLC-MS/MS and chemical derivatization. Food Chemistry, 219, 373–381.  https://doi.org/10.1016/j.foodchem.2016.09.146.CrossRefPubMedGoogle Scholar
  28. Mai, Z., Chen, J., He, T., Hu, Y., Dong, X., Zhang, H., Huang, W., Ko, F., & Zhou, W. (2017). Electrospray biodegradable microcapsules loaded with curcumin for drug delivery systems with high bioactivity. RSC Advances, 7(3), 1724–1734.  https://doi.org/10.1039/c6ra25314h.CrossRefGoogle Scholar
  29. Menon, V. P., & Sudheer, A. R. (2007). Antioxidant and anti-inflammatory properties of curcumin. In B. B. Aggarwal, Y.-J. Surh, & S. Shishodia (Eds.), The molecular targets and therapeutic uses of curcumin in health and disease (pp. 105–125). Boston: Springer US.  https://doi.org/10.1007/978-0-387-46401-5_3.CrossRefGoogle Scholar
  30. Mirzaei, H., Shakeri, A., Rashidi, B., Jalili, A., Banikazemi, Z., & Sahebkar, A. (2017). Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomedicine & Pharmacotherapy, 85, 102–112.  https://doi.org/10.1016/j.biopha.2016.11.098.CrossRefGoogle Scholar
  31. Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., & Walters, M. A. (2017). The essential medicinal chemistry of curcumin. Journal of Medicinal Chemistry, 60(5), 1620–1637.  https://doi.org/10.1021/acs.jmedchem.6b00975.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Oliveira, A. S., Sousa, E., Vasconcelos, M. H., & Pinto, M. (2015). Curcumin: A natural lead for potential new drug candidates. Current Medicinal Chemistry, 22(36), 4196–4232.CrossRefGoogle Scholar
  33. Pang, S. C., Tay, S. H., & Chin, S. F. (2014). Facile synthesis of curcumin-loaded starch-maleate nanoparticles. Journal of Nanomaterials, 2014(7), 1–7.  https://doi.org/10.1155/2014/824025.CrossRefGoogle Scholar
  34. Qi, X., & Tester, R. F. (2019). Starch granules as active guest molecules or microorganism delivery systems. Food Chemistry, 271, 182–186.  https://doi.org/10.1016/j.foodchem.2018.07.177.CrossRefPubMedGoogle Scholar
  35. Qin, Y., Liu, C., Jiang, S., Xiong, L., & Sun, Q. (2016). Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type. Industrial Crops and Products, 87, 182–190.  https://doi.org/10.1016/j.indcrop.2016.04.038.CrossRefGoogle Scholar
  36. Shabana, S., Prasansha, R., Kalinina, I., Potoroko, I., Bagale, U., & Shirish, S. H. (2019). Ultrasound assisted acid hydrolyzed structure modification and loading of antioxidants on potato starch nanoparticles. Ultrasonics Sonochemistry., 51, 444–450.  https://doi.org/10.1016/j.ultsonch.2018.07.023.CrossRefPubMedGoogle Scholar
  37. Stanić, Z. (2017). Curcumin, a compound from natural sources, a true scientific challenge – A review. Plant Foods for Human Nutrition, 72(1), 1–12.  https://doi.org/10.1007/s11130-016-0590-1.CrossRefPubMedGoogle Scholar
  38. Suárez, G., & Gutiérrez, T. J. (2017). Recent advances in the development of biodegadable films and foams from cassava starch. In C. Klein (Ed.), Handbook on cassava: Production, potential uses and recent advances (pp. 297–312). New York. EE.UU. ISBN: 978-1-53610-307-6: Editorial Nova Science Publishers, Inc.Google Scholar
  39. Walia, N., Dasgupta, N., Ranjan, S., Chen, L., & Ramalingam, C. (2017). Fish oil based vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrasonics Sonochemistry, 39, 623–635.  https://doi.org/10.1016/j.ultsonch.2017.05.021.CrossRefPubMedGoogle Scholar
  40. Wang, S., Li, C., Copeland, L., Niu, Q., & Wang, S. (2015). Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 14(5), 568–585.  https://doi.org/10.1111/1541-4337.12143.CrossRefGoogle Scholar
  41. Wang, S., Sharp, P., & Copeland, L. (2011). Structural and functional properties of starches from field peas. Food Chemistry, 126(4), 1546–1552.  https://doi.org/10.1016/j.foodchem.2010.11.154.CrossRefPubMedGoogle Scholar
  42. Yang, J., Li, F., Li, M., Zhang, S., Liu, J., Liang, C., Sun, Q., & Xiong, L. (2017). Fabrication and characterization of hollow starch nanoparticles by gelation process for drug delivery application. Carbohydrate Polymers, 173, 223–232.  https://doi.org/10.1016/j.carbpol.2017.06.006.CrossRefPubMedGoogle Scholar
  43. Zhu, F. (2017). Encapsulation and delivery of food ingredients using starch based systems. Food Chemistry, 229, 542–552.  https://doi.org/10.1016/j.foodchem.2017.02.101.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cristian C. Villa
    • 1
    Email author
  • Leidy T. Sanchez
    • 2
  • N. David Rodriguez-Marin
    • 2
  1. 1.Chemistry Department, Faculty of Basic Sciences and TechnologyQuindío UniversityArmeniaColombia
  2. 2.Food Engineering Department, Faculty of Agroindustrial SciencesQuindío UniversityArmeniaColombia

Personalised recommendations