Advertisement

Potential Use of Polymeric Particles for the Regulation of Plant Growth

  • Anderson E. S. Pereira
  • Bruno T. Sousa
  • María J. Iglesias
  • Vera A. Alvarez
  • Claudia A. Casalongué
  • Halley C. Oliveira
  • Leonardo F. FracetoEmail author
Chapter
  • 320 Downloads

Abstract

Plant growth regulators (PGRs) are molecules widely applied in the agriculture, leading to increased crop yield and improved quality of agricultural products. These compounds act as plant hormones, affecting the plant hormonal homeostasis, and thus control plant growth and development. Recently, the development of polymer-based modified release systems for PGRs has emerged as a promising alternative for increasing the efficacy of these compounds. This review will focus on polymeric particles that are used as carrier systems for PGRs, allowing their controlled release and protecting them from degradation. Successful examples include the phytohormone gibberellic acid(GA3)-loaded nanoparticles, which showed higher efficacy than the non-nano active ingredient in promoting seed germination and seedling growth, and salicylic acid (SA) and nitric oxide (NO)-releasing nanoparticles as effective plant protection agents against stresses. Polymeric nanomaterials per se such as chitosan (Cs) can also alter plant signaling pathways and promote plant growth and development. Despite their great potential in improving the plant production with less damage to the environment, relatively few studies have focused on the use of these nanomaterials for the development of modified release systems for PGRs. In this scenario, this review discusses on the major advances and obstacles in the area.

Keywords

Carrier system Chitosan Nanoparticles Plant growth regulator 

Notes

Acknowledgments

Authors would like to thank São Paulo Research Foundation (FAPESP grant #2017/21004-5) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 0008, PICT 0959, PICT 2421), Universidad Nacional de Mar del Plata and CONICET from Argentina.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Abdel-Aziz, H. M. M., Hasaneen, M. N. A., & Omer, A. M. (2016). Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research, 14(1), 0902.  https://doi.org/10.5424/sjar/2016141-8205.CrossRefGoogle Scholar
  2. Allègre, M., Daire, X., Héloir, M.-C., Trouvelot, S., Mercier, L., Adrian, M., & Pugin, A. (2007). Stomatal deregulation in Plasmopara viticola-infected grapevine leaves. The New Phytologist, 173(4), 832–840.  https://doi.org/10.1111/j.1469-8137.2006.01959.x.CrossRefPubMedGoogle Scholar
  3. Ambrogi, V., Famiani, F., Perioli, L., Marmottini, F., Di Cunzolo, I., & Rossi, C. (2006). Effect of MCM-41 on the dissolution rate of the poorly soluble plant growth regulator, the indole-3-butyric acid. Microporous and Mesoporous Materials, 96(1–3), 177–183.  https://doi.org/10.1016/j.micromeso.2006.06.033.CrossRefGoogle Scholar
  4. Anusuya, S., & Banu, K. N. (2016). Silver-chitosan nanoparticles induced biochemical variations of chickpea (Cicer arietinum L.). Biocatalysis and Agricultural Biotechnology, 8, 39–44.  https://doi.org/10.1016/j.bcab.2016.08.005.CrossRefGoogle Scholar
  5. Ao, M., Zhu, Y., He, S., Li, D., Li, P., Li, J., & Cao, Y. (2013). Preparation and characterization of 1-naphthylacetic acid–silica conjugated nanospheres for enhancement of controlled-release performance. Nanotechnology, 24(3).  https://doi.org/10.1088/0957-4484/24/3/035601.CrossRefGoogle Scholar
  6. Asgari-Targhi, G., Iranbakhsh, A., & Ardebili, Z. O. (2018). Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiol Biochem PPB, 127, 393–402.  https://doi.org/10.1016/j.plaphy.2018.04.013.CrossRefPubMedGoogle Scholar
  7. Athanassiou, C. G., Kavallieratos, N. G., Benelli, G., Losic, D., Usha Rani, P., & Desneux, N. (2017). Nanoparticles for pest control: Current status and future perspectives. Journal of Pest Science, 91(1), 1–15.  https://doi.org/10.1007/s10340-017-0898-0.CrossRefGoogle Scholar
  8. Baldwin, E. A. (1994). Edible coatings for fresh fruits and vegetables: Past, present, and future. In J. M. Krochta, E. A. Baldwin, & M. O. Nisperos-Carriedo (Eds.), Edible coatings and films to improve food quality (pp. 25–64). Lancaster: Technomic Publishing.Google Scholar
  9. Barrios, A. C., Rico, C. M., Trujillo-Reyes, J., Medina-Velo, I. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2016). Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Science of the Total Environment, 563–564, 956–964.  https://doi.org/10.1016/j.scitotenv.2015.11.143.CrossRefPubMedGoogle Scholar
  10. Basra AS (2000) Plant growth regulators in agriculture and horticulture: Their role and commercial uses. Plant growth Regul Agric Hortic their role Commer uses.Google Scholar
  11. Behboudi, F., Tahmasebi Sarvestani, Z., Kassaee, M. Z., Modares Sanavi, S. A. M., Sorooshzadeh, A., & Ahmadi, S. B. (2018). Evaluation of chitosan nanoparticles effects on yield and yield components of barley (Hordeum vulgare L.) under late season drought stress. Journal of Water and Environmental Nanotechnology, 3(1), 22–39.  https://doi.org/10.22090/jwent.2018.01.003.CrossRefGoogle Scholar
  12. Camara, M. C., et al. (2018). Current advances in gibberellic acid (GA3) production, patented technologies and potential applications. Planta, 248, 1049–1062.CrossRefGoogle Scholar
  13. Campos, E. V. R., de Oliveira, J. L., Fraceto, L. F., & Singh, B. (2015). Polysaccharides as safer release systems for agrochemicals. Agronomy for Sustainable Development, 35(1), 47–66.  https://doi.org/10.1007/s13593-014-0263-0.CrossRefGoogle Scholar
  14. Cardoso, C., et al. (2011). AIB e substratos no enraizamento de estacas de pessegueiro ‘Okinawa’ coletadas no outono. Semina: Ciências Agrárias, 32, 1307–1314.Google Scholar
  15. Cardoso, J. C., Ono, E. O., & Rodrigues, J. D. (2012). Ácido giberélico na indução e qualidade do florescimento de orquídea Phalaenopsis ‘White Dream’. Revista Brasileira de Horticultura Ornamental, 135–140.  https://doi.org/10.14295/rbho.v18i2.381.CrossRefGoogle Scholar
  16. Chandra, S., Chakraborty, N., Dasgupta, A., Sarkar, J., Panda, K., & Acharya, K. (2015). Chitosan nanoparticles: A positive modulator of innate immune responses in plants. Scientific Reports, 5(15195).  https://doi.org/10.1038/srep15195.
  17. Chattopadhyay, D. P., & Inamdar, M. S. (2010). Aqueous behaviour of chitosan. International Journal of Polymer Science, 2010, 1–7.  https://doi.org/10.1155/2010/939536.CrossRefGoogle Scholar
  18. Chen, H., & Yada, R. (2011). Nanotechnologies in agriculture: New tools for sustainable development. Trends in Food Science and Technology, 22(11), 585–594.  https://doi.org/10.1016/j.tifs.2011.09.004.CrossRefGoogle Scholar
  19. Choudhary, R. C., Kumaraswamy, R. V., Kumari, S., Sharma, S. S., Pal, A., Raliya, R., Biswas, P., & Saharan, V. (2017). Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Scientific Reports, 7, 9754.  https://doi.org/10.1038/s41598-017-08571-0.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ciura, J., & Kruk, J. (2018). Phytohormones as targets for improving plant productivity and stress tolerance. Journal of Plant Physiology, 229, 32–40.  https://doi.org/10.1016/j.jplph.2018.06.013.CrossRefPubMedGoogle Scholar
  21. Corredor, E., Testillano, P. S., Coronado, M.-J., González-Melendi, P., Fernández-Pacheco, R., Marquina, C., Ibarra, M. R., de la Fuente, J. M., Rubiales, D., Pérez-de-Luque, A., & Risueño, M.-C. (2009). Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biology, 9, 45.  https://doi.org/10.1186/1471-2229-9-45.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Crespy, D., Stark, M., Hoffmann-Richter, C., Ziener, U., & Landfester, K. (2007). Polymeric nanoreactors for hydrophilic reagents synthesized by interfacial polycondensation on miniemulsion droplets. Macromolecules?, 40(9), 3122–3135.  https://doi.org/10.1021/ma0621932.CrossRefGoogle Scholar
  23. de Oliveira, J. L., Campos, E. V. R., Bakshi, M., Abhilash, P. C., & Fernandes Fraceto, L. (2014). Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: Prospects and promises. Biotechnology Advances, 32(8), 1550–1561.  https://doi.org/10.1016/j.biotechadv.2014.10.010.CrossRefPubMedGoogle Scholar
  24. Dibax, R., de Alcantara, G. B., Machado, M. P., Filho, J. C. B., & Oliveira, R. A. de. (2013). Protocol optimization and histological analysis of in vitro plant regeneration of RB92579 and RB93509 sugarcane cultivars. Ciência Rural, 43, 49–54.CrossRefGoogle Scholar
  25. Dong, C., Xu, N., Ding, C., Gu, H., Zhang, W., & Li, X. (2016). Suitable gibberellic acid treatment for double-purpose rice (Oryza sativa L.) varieties at different harvest times. Field Crops Research, 193, 178–185.  https://doi.org/10.1016/j.fcr.2016.04.038.CrossRefGoogle Scholar
  26. Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports, 15, 11–23.  https://doi.org/10.1016/j.btre.2017.03.002.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ebine, K., & Ueda, T. (2015). Roles of membrane trafficking in plant cell wall dynamics. Frontiers in Plant Science, 6.  https://doi.org/10.3389/fpls.2015.00878.
  28. Enders, T. A., & Strader, L. C. (2015). Auxin activity: Past, present, and future. American Journal of Botany, 102, 180–196.CrossRefGoogle Scholar
  29. Espinosa, M. E. Á., et al. (2017). Early histological, hormonal, and molecular changes during pineapple (Ananas comosus (L.) Merrill) artificial flowering induction. Journal of Plant Physiology, 209, 11–19.CrossRefGoogle Scholar
  30. Fan, W., Yan, W., Xu, Z., & Ni, H. (2012). Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids and Surfaces. B, Biointerfaces, 90, 21–27.CrossRefGoogle Scholar
  31. Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., Rea, G., & Bartolucci, C. (2016). Nanotechnology in agriculture: Which innovation potential does it have? Frontiers in Environmental Science, 4.  https://doi.org/10.3389/fenvs.2016.00020.
  32. Fryd, M. M., & Mason, T. G. (2012). Advanced Nanoemulsions. Annual Review of Physical Chemistry, 63, 493–518.  https://doi.org/10.1146/annurev-physchem-032210-103436.CrossRefPubMedGoogle Scholar
  33. Fu, L., Shen, Q., Kuang, L., Yu, J., Wu, D., & Zhang, G. (2018). Metabolite profiling and gene expression of Na/K transporter analyses reveal mechanisms of the difference in salt tolerance between barley and rice. Plant Physiological Biochemistry PPB, 130, 248–257.  https://doi.org/10.1016/j.plaphy.2018.07.013.CrossRefPubMedGoogle Scholar
  34. Ge, X., He, J., Yang, Y., Qi, F., Huang, Z., Lu, R., Huang, L., & Yao, X. (2011). Study on inclusion complexation between plant growth regulator 6-benzylaminopurine and β-cyclodextrin: Preparation, characterization and molecular modeling. Journal of Molecular Structure, 994(1–3), 163–169.  https://doi.org/10.1016/j.molstruc.2011.03.013.CrossRefGoogle Scholar
  35. Grozeff, G., et al. (2010). 1-Methyl cyclopropene extends postharvest life of spinach leaves. Postharvest Biology and Technology, 55, 182–185.CrossRefGoogle Scholar
  36. Ghormade, V., Deshpande, M. V., & Paknikar, K. M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances, 29(6), 792–803.  https://doi.org/10.1016/j.biotechadv.2011.06.007.CrossRefPubMedGoogle Scholar
  37. Grillo, R., Abhilash, P. C., & Fraceto, L. F. (2016). Nanotechnology applied to bio-encapsulation of pesticides. Journal of Nanoscience and Nanotechnology, 16(1), 1231–1234.  https://doi.org/10.1166/jnn.2016.12332.CrossRefPubMedGoogle Scholar
  38. Grover, A. (2012). Plant chitinases: Genetic diversity and physiological roles. Critical Reviews in Plant Sciences, 31(1), 57–73.  https://doi.org/10.1080/07352689.2011.616043.CrossRefGoogle Scholar
  39. Gubaeva, E., Gubaev, A., Melcher, R. L. J., Cord-Landwehr, S., Singh, R., El Gueddari, N. E., & Moerschbacher, B. M. (2018). ‘Slipped sandwich’ model for chitin and chitosan perception in Arabidopsis. Molecular Plant-Microbe Interactions, 31(11), 1145–1153.  https://doi.org/10.1094/mpmi-04-18-0098-r.CrossRefPubMedGoogle Scholar
  40. Gutiérrez, T. J. (2017). Chapter 8. Chitosan applications for the food industry. In S. Ahmed & S. Ikram (Eds.), Chitosan: Derivatives, composites and applications (pp. 183–232). Hoboken. EE.UU. ISBN: 978-1-119-36350-7: WILEY-Scrivener Publisher.  https://doi.org/10.1002/9781119364849.ch8.CrossRefGoogle Scholar
  41. Gutiérrez, T. J. (2018). Chapter 55. Processing nano- and microcapsules for industrial applications. In C. M. Hussain (Ed.), Handbook of nanomaterials for industrial applications (pp. 989–1011). Amsterdam: Editorial Elsevier. EE.UU. ISBN: 978–0–12-813351-4.  https://doi.org/10.1016/B978-0-12-813351-4.00057-2.CrossRefGoogle Scholar
  42. Gutiérrez, T. J., & Álvarez, K. (2017). Chapter 6. Biopolymers as microencapsulation materials in the food industry. In M. Masuelli & D. Renard (Eds.), Advances in physicochemical properties of biopolymers: Part 2 (Vol. 2017, pp. 296–322). Bentham Science Publishers. EE.UU. ISBN: 978–1–68108-545-6. eISBN: 978–1–68108-544-9.  https://doi.org/10.2174/9781681085449117010009.
  43. Hanson, J. A., Chang, C. B., Graves, S. M., Li, Z., Mason, T. G., & Deming, T. J. (2008). Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature, 455(7209), 85–88.  https://doi.org/10.1038/nature07197.CrossRefPubMedGoogle Scholar
  44. Hao, Y., Xu, B., Ma, C., Shang, J., Gu, W., Li, W., Hou, T., Xiang, Y., Cao, W., Xing, B., & Rui, Y. (2018). Synthesis of novel mesoporous carbon nanoparticles and their phytotoxicity to rice (Oryza sativa L.). Journal of Saudi Chemical Society, 23(1), 75–82.  https://doi.org/10.1016/j.jscs.2018.05.003.CrossRefGoogle Scholar
  45. Hornig, S., Heinze, T., Becer, C. R., & Schubert, U. S. (2009). Synthetic polymeric nanoparticles by nanoprecipitation. Journal of Materials Chemistry, 19, 3838–3840.  https://doi.org/10.1039/b906556n.CrossRefGoogle Scholar
  46. Hussain, I., Ahmad, S., Amjad, M., & Ahmed, R. (2015). Thephon application at kimri stage accelerates the fruit maturation period and improves phytonutrients status (Hillawi and Khadrawi (c.v.)) of date palm fruit. 52(1), 10.Google Scholar
  47. Iqbal, M., Zafar, N., Fessi, H., & Elaissari, A. (2015). Double emulsion solvent evaporation techniques used for drug encapsulation. International Journal of Pharmaceutics, 496(2), 173–190.  https://doi.org/10.1016/j.ijpharm.2015.10.057.CrossRefPubMedGoogle Scholar
  48. Kah, M., Beulke, S., Tiede, K., & Hofmann, T. (2013). Nanopesticides: State of knowledge, environmental fate, and exposure modeling. Critical Reviews in Environmental Science and Technology, 43(16), 1823–1867.  https://doi.org/10.1080/10643389.2012.671750.CrossRefGoogle Scholar
  49. Kah, M., & Hofmann, T. (2014). Nanopesticide research: Current trends and future priorities. Environment International, 63, 224–235.  https://doi.org/10.1016/j.envint.2013.11.015.CrossRefPubMedGoogle Scholar
  50. Kashyap, P. L., Xiang, X., & Heiden, P. (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 77, 36–51.  https://doi.org/10.1016/j.ijbiomac.2015.02.039.CrossRefPubMedGoogle Scholar
  51. Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., & Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection, 35, 64–70.  https://doi.org/10.1016/j.cropro.2012.01.007.CrossRefGoogle Scholar
  52. Khutoryanskiy, V. V. (2011). Advances in mucoadhesion and mucoadhesive polymers. Macromolecular Bioscience, 11(6), 748–764.  https://doi.org/10.1002/mabi.201000388.CrossRefPubMedGoogle Scholar
  53. Kim, S.-J., & Brandizzi, F. (2014). The plant secretory pathway: An essential factory for building the plant cell wall. Plant & Cell Physiology, 55(4), 687–693.  https://doi.org/10.1093/pcp/pct197.CrossRefGoogle Scholar
  54. Kong, D. D., & Cao, Y. S. (2018). Preparation and characterization of indole-3-butyric acid nanospheres for improving its stability and utilization. Materials Science and Engineering C – Materials for Biological Applications, 89, 175–181.CrossRefGoogle Scholar
  55. Kokina, I., Jahundoviča, I., Mickeviča, I., Jermaļonoka, M., Strautiņš, J., Popovs, S., Ogurcovs, A., Sledevskis, E., Polyakov, B., & Gerbreders, V. (2017). Target transportation of auxin on mesoporous Au/SiO2 Nanoparticles as a method for somaclonal variation increasing in flax (L. usitatissimum L.). Journal of Nanomaterials, 2017, 1–9.  https://doi.org/10.1155/2017/7143269.CrossRefGoogle Scholar
  56. Lindermayr, C., & Durner, J. (2018). Nitric oxide sensor proteins with revolutionary potential. Journal of Experimental Botany, 69(15), 3507–3510.  https://doi.org/10.1093/jxb/ery193.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Liu, Y., Sun, Y., He, S., Zhu, Y., Ao, M., Li, J., & Cao, Y. (2013). Synthesis and characterization of gibberellin–chitosan conjugate forcontrolled-release applications. International Journal of Biological Macromolecules, 57, 213–217.  https://doi.org/10.1016/j.ijbiomac.2013.03.024.CrossRefPubMedGoogle Scholar
  58. Liu, D., Jiao, S., Cheng, G., Li, X., Pei, Z., Pei, Y., Yin, H., & Du, Y. (2018). Identification of chitosan oligosaccharides binding proteins from the plasma membrane of wheat leaf cell. International Journal of Biological Macromolecules, 111, 1083–1090.  https://doi.org/10.1016/j.ijbiomac.2018.01.113.CrossRefPubMedGoogle Scholar
  59. López-Moreno, M. L., Cedeño-Mattei, Y., Bailón-Ruiz, S. J., Vazquez-Nuñez, E., Hernandez-Viezcas, J. A., Perales-Pérez, O. J., Dela Rosa, G., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2018). Environmental behavior of coated NMs: Physicochemical aspects and plant interactions. Journal of Hazardous Materials, 347, 196–217.  https://doi.org/10.1016/j.jhazmat.2017.12.058.CrossRefPubMedGoogle Scholar
  60. Malerba, M., & Cerana, R. (2016). Chitosan effects on plant systems. International Journal of Molecular Sciences, 17(7).  https://doi.org/10.3390/ijms17070996.CrossRefGoogle Scholar
  61. Martin-Saldaña, S., et al. (2018). Salicylic acid loaded chitosan microparticles applied to lettuce seedlings: Recycling shrimp fishing industry waste. Carbohydrate Polymers, 200, 321–331.CrossRefGoogle Scholar
  62. Martín-Saldaña, S., Palao-Suay, R., Aguilar, M. R., Ramírez-Camacho, R., & San Román, J. (2017). Polymeric nanoparticles loaded with dexamethasone or α-tocopheryl succinate to prevent cisplatin-induced ototoxicity. Acta Biomaterialia, 53, 199–210.  https://doi.org/10.1016/j.actbio.2017.02.019.CrossRefPubMedGoogle Scholar
  63. Martín-Saldaña, S., Palao-Suay, R., Trinidad, A., Aguilar, M. R., Ramírez-Camacho, R., & San Román, J. (2016). Otoprotective properties of 6α-methylprednisolone-loaded nanoparticles against cisplatin: In vitro and in vivo correlation. Nanomedicine: Nanotechnology, Biology and Medicine, 12(4), 965–976.  https://doi.org/10.1016/j.nano.2015.12.367.CrossRefGoogle Scholar
  64. Mishra, S., Keswani, C., Abhilash, P. C., Fraceto, L. F., & Singh, H. B. (2017). Integrated approach of Agri-nanotechnology: Challenges and future trends. Frontiers in Plant Science, 8(471).  https://doi.org/10.3389/fpls.2017.00471.
  65. Nakasato, D. Y., Pereira, A. E. S., Oliveira, J. L., Oliveira, H. C., & Fraceto, L. F. (2017). Evaluation of the effects of polymeric chitosan/tripolyphosphate and solid lipid nanoparticles on germination of Zea mays, Brassica rapa and Pisum sativum. Ecotoxicology and Environmental Safety, 142, 369–374.  https://doi.org/10.1016/j.ecoenv.2017.04.033.CrossRefPubMedGoogle Scholar
  66. Navarro, E., Wagner, B., Odzak, N., Sigg, L., & Behra, R. (2015). Effects of differently coated silver nanoparticles on the photosynthesis of Chlamydomonas reinhardtii. Environmental Science & Technology, 49(13), 8041–8047.  https://doi.org/10.1021/acs.est.5b01089.CrossRefGoogle Scholar
  67. Nguyen, M.-H., Nguyen, T.-H.-N., Hwang, I.-C., Bui, C.-B., & Park, H.-J. (2016). Effects of the physical state of nanocarriers on their penetration into the root and upward transportation to the stem of soybean plants using confocal laser scanning microscopy. Crop Protection, 87, 25–30.  https://doi.org/10.1016/j.cropro.2016.04.012.CrossRefGoogle Scholar
  68. Nguyen Van, S., Dinh Minh, H., & Nguyen Anh, D. (2013). Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatalysis and Agricultural Biotechnology, 2(4), 289–294.  https://doi.org/10.1016/j.bcab.2013.06.001.CrossRefGoogle Scholar
  69. Oliveira, H. C., Gomes, B. C. R., Pelegrino, M. T., & Seabra, A. B. (2016). Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide, 61, 10–19.  https://doi.org/10.1016/j.niox.2016.09.010.CrossRefPubMedGoogle Scholar
  70. Ordaz-Ortiz, J. J., Foukaraki, S., & Terry, L. A. (2015). Assessing temporal flux of plant hormones in stored processing potatoes using high definition accurate mass spectrometry. Horticulture Research, 2(15002).  https://doi.org/10.1038/hortres.2015.2.
  71. Peixoto, C. P., & Passos, A. R. (2011). Ação da giberelina em sementes pré-embebidas de mamoneira. Comunicata Scientiae, 6.Google Scholar
  72. Pereira, A. E. S., Sandoval-Herrera, I. E., Zavala-Betancourt, S. A., Oliveira, H. C., Ledezma-Pérez, A. S., Romero, J., & Fraceto, L. F. (2017a). γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: Characterization and evaluation of biological activity. Carbohydrate Polymers, 157, 1862–1873.  https://doi.org/10.1016/j.carbpol.2016.11.073.CrossRefPubMedGoogle Scholar
  73. Pereira, A. E. S., Silva, P. M., Oliveira, J. L., Oliveira, H. C., & Fraceto, L. F. (2017b). Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloids and Surfaces. B, Biointerfaces, 150, 141–152.  https://doi.org/10.1016/j.colsurfb.2016.11.027.CrossRefPubMedGoogle Scholar
  74. Pérez Quiñones, J., Brüggemann, O., Kjems, J., Shahavi, M. H., & Peniche Cova, C. (2018). Novel brassinosteroid-modified polyethylene glycol micelles for controlled release of agrochemicals. Journal of Agricultural and Food Chemistry, 66(7), 1612–1619.  https://doi.org/10.1021/acs.jafc.7b05019.CrossRefPubMedGoogle Scholar
  75. Pérez-de-Luque, A. (2017). Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Frontiers in Environmental Science, 5.  https://doi.org/10.3389/fenvs.2017.00012.
  76. Pérez-de-Luque, A., & Rubiales, D. (2009). Nanotechnology for parasitic plant control. Pest Management Science, 65(5), 540–545.  https://doi.org/10.1002/ps.1732.CrossRefPubMedGoogle Scholar
  77. Petri, J. L., Leite, G. B., & Argenta, L. C. (2007). Eficácia do tratamento de AVG no controle da queda e maturação dos frutos de maçã, cultivar imperial gala. Revista Brasileira de Fruticultura, 29, 239–244.CrossRefGoogle Scholar
  78. Petutschnig, E. K., Jones, A. M. E., Serazetdinova, L., Lipka, U., & Lipka, V. (2010). The Lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. The Journal of Biological Chemistry, 285, 28902–28911.  https://doi.org/10.1074/jbc.m110.116657.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Prasad, A., Astete, C. E., Bodoki, A. E., Windham, M. K., Bodoki, E., & Sabliov, C. M. (2017a). Zein nanoparticles uptake and translocation in hydroponically grown sugar cane plants. Journal of Agricultural and Food Chemistry, 66(26), 6544–6551.  https://doi.org/10.1021/acs.jafc.7b02487.CrossRefPubMedGoogle Scholar
  80. Prasad, R., Bhattacharyya, A., & Nguyen, Q. D. (2017b). Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Frontiers in Microbiology, 8.  https://doi.org/10.3389/fmicb.2017.01014.
  81. Quiñones, J. P., García, Y. C., Curiel, H., & Covas, C. P. (2010). Microspheres of chitosan for controlled delivery of brassinosteroids with biological activity as agrochemicals. Carbohydrate Polymers, 80(3), 915–921.  https://doi.org/10.1016/j.carbpol.2010.01.006.CrossRefGoogle Scholar
  82. Rademacher, W. (2015). Plant growth regulators: Backgrounds and uses in plant production. Journal of Plant Growth Regulation, 34(4), 845–872.  https://doi.org/10.1007/s00344-015-9541-6.CrossRefGoogle Scholar
  83. Rao, J. P., & Geckeler, K. E. (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science, 36(7), 887–913.  https://doi.org/10.1016/j.progpolymsci.2011.01.001.CrossRefGoogle Scholar
  84. Revell P.A. (2006) The biological effect of nanoparticles, Nanotechnology perceptions? 2:283–229.Google Scholar
  85. Rodrigues, & Fioreze. (2015). Reguladores são, para muitos cultivos, indispensáveis ao alcance de bons níveis. Fisiologia compostos, 5.Google Scholar
  86. Saharan, V., Kumaraswamy, R. V., Choudhary, R. C., Kumari, S., Pal, A., Raliya, R., & Biswas, P. (2016). Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. Journal of Agricultural and Food Chemistry, 64(31), 6148–6155.  https://doi.org/10.1021/acs.jafc.6b02239.CrossRefPubMedGoogle Scholar
  87. Sathiyabama, M., & Manikandan, A. (2018). Application of copper-chitosan nanoparticles stimulate growth and induce resistance in finger millet (Eleusine coracana gaertn.) plants against blast disease. Journal of Agricultural and Food Chemistry, 66(8), 1784–1790.  https://doi.org/10.1021/acs.jafc.7b05921.CrossRefPubMedGoogle Scholar
  88. Schulz, B., & Segobye, K. (2016). 2,4-D transport and herbicide resistance in weeds. Journal of Experimental Botany, 67, 3177–3179.CrossRefGoogle Scholar
  89. Seabra, & Oliveira. (2016). How nitric oxide donors can protect plants in a changing environment: What we know so far and perspectives. AIMS Molecular Science, 3, 692–718.CrossRefGoogle Scholar
  90. Silva, E. S. D., Wong-Wah-Chung, P., Burrows, H. D., & Sarakha, M. (2013). Photochemical degradation of the plant growth regulator 2-(1-naphthyl) acetamide in aqueous solution upon UV irradiation. Photochemistry and Photobiology, 89(3), 560–570.  https://doi.org/10.1111/php.12050.CrossRefPubMedGoogle Scholar
  91. Skůpa, P., Opatrný, Z., & Petrášek, J. (2014). Auxin biology: Applications and the mechanisms behind. In P. Nick & Z. Opatrny (Eds.), Applied plant cell biology: Cellular tools and approaches for plant biotechnology (pp. 69–102). Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-41787-0_3.CrossRefGoogle Scholar
  92. Solans, C., Izquierdo, P., Nolla, J., Azemar, N., & Garcia-Celma, M. J. (2005). Nano-emulsions. Current Opinion in Colloid & Interface Science, 10(3–4), 102–110.  https://doi.org/10.1016/j.cocis.2005.06.004.CrossRefGoogle Scholar
  93. Stavolone, L., & Lionetti, V. (2017). Extracellular matrix in plants and animals: Hooks and locks for viruses. Frontiers in Microbiology, 8.  https://doi.org/10.3389/fmicb.2017.01760.
  94. Steffens, C. A., do Amarante, C. V. T., Chechi, R., Silveira, J. P. G., & Brackmann, A. (2009). Aplicação pré-colheita de reguladores vegetais visando retardar a maturação de ameixas ‘Laetitia. Ciência Rural, 39, 1369–1373.CrossRefGoogle Scholar
  95. Sun, C., Shu, K., Wang, W., Ye, Z., Liu, T., Gao, Y., Zheng, H., He, G., & Yin, Y. (2014). Encapsulation and controlled release of hydrophilic pesticide in shell cross-linked nanocapsules containing aqueous core. International Journal of Pharmaceutics, 463(1), 108–114.  https://doi.org/10.1016/j.ijpharm.2013.12.050.CrossRefPubMedGoogle Scholar
  96. Tao, S., Pang, R., Chen, C., Ren, X., & Hu, S. (2012). Synthesis, characterization and slow release properties of O-naphthylacetyl chitosan. Carbohydrate Polymers, 88(4), 1189–1194.  https://doi.org/10.1016/j.carbpol.2012.01.076.CrossRefGoogle Scholar
  97. Thickett, S. C., Gaborieau, M., & Gilbert, R. G. (2007). Extended mechanistic description of particle growth in electrosterically stabilized emulsion polymerization systems. Macromolecules, 40(13), 4710–4720.  https://doi.org/10.1021/ma070837f.CrossRefGoogle Scholar
  98. Thompson, D. S. (2007). Space and time in the plant cell wall: Relationships between cell type, cell wall rheology and cell function. Annals of Botany, 101(2), 203–211.  https://doi.org/10.1093/aob/mcm138.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Tripathi, D. K., Shweta, S. S., Singh, S., Pandey, R., Singh, V. P., Sharma, N. C., Prasad, S. M., Dubey, N. K., & Chauhan, D. K. (2017). An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry, 110, 2–12.  https://doi.org/10.1016/j.plaphy.2016.07.030.CrossRefPubMedGoogle Scholar
  100. Valletta, A., Chronopoulou, L., Palocci, C., Baldan, B., Donati, L., & Pasqua, G. (2014). Poly(lactic-co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi. Journal of Nanoparticle Research, 16(2744).  https://doi.org/10.1007/s11051-014-2744-0.
  101. Vankova, R., Landa, P., Podlipna, R., Dobrev, P. I., Prerostova, S., Langhansova, L., Gaudinova, A., Motkova, K., Knirsch, V., & Vanek, T. (2017). ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana. Science Total Environmental, 593–594, 535–542.  https://doi.org/10.1016/j.scitotenv.2017.03.160.CrossRefGoogle Scholar
  102. Venkatachalam, P., Priyanka, N., Manikandan, K., Ganeshbabu, I., Indiraarulselvi, P., Geetha, N., Muralikrishna, K., Bhattacharya, R. C., Tiwarid, M., Sharmad, N., & Sahid, S. V. (2017). Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry, 110, 118–127.  https://doi.org/10.1016/j.plaphy.2016.09.004.CrossRefPubMedGoogle Scholar
  103. Wan, J., Zhang, X.-C., Neece, D., Ramonell, K. M., Clough, S., S-y, K., Stacey, M. G., & Staceya, G. (2008). A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in arabidopsis. Plant Cell, 20, 471–481.  https://doi.org/10.1105/tpc.107.056754.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Wang, P., Lombi, E., Zhao, F.-J., & Kopittke, P. M. (2016). Nanotechnology: A new opportunity in plant sciences. Trends in Plant Science, 21(8), 699–712.  https://doi.org/10.1016/j.tplants.2016.04.005.CrossRefPubMedGoogle Scholar
  105. Xue, W., Han, Y., Tan, J., Wang, Y., Wang, G., & Wang, H. (2018). Effects of nanochitin on the enhancement of the grain yield and quality of winter wheat. Journal of Agricultural and Food Chemistry, 66(26), 6637–6645.  https://doi.org/10.1021/acs.jafc.7b00641.CrossRefPubMedGoogle Scholar
  106. Yang, R., Xiao, C.-F., Guo, Y.-F., Ye, M., & Lin, J. (2018). Inclusion complexes of GA3 and the plant growth regulation activities. Materials Science and Engineering: C, 91, 475–485.  https://doi.org/10.1016/j.msec.2018.05.043.CrossRefGoogle Scholar
  107. Zargar, V., Asghari, M., & Dashti, A. (2015). A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews, 2(3), 204–226.  https://doi.org/10.1002/cben.201400025.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anderson E. S. Pereira
    • 1
  • Bruno T. Sousa
    • 2
  • María J. Iglesias
    • 3
  • Vera A. Alvarez
    • 4
  • Claudia A. Casalongué
    • 3
  • Halley C. Oliveira
    • 2
  • Leonardo F. Fraceto
    • 1
    Email author
  1. 1.Department of Environmental EngineeringInstitute of Science and Technology of Sorocaba (ICTS), São Paulo State University (UNESP)SorocabaBrazil
  2. 2.Department of Animal and Plant BiologyState University of LondrinaLondrinaBrazil
  3. 3.Instituto de Investigaciones Biológicas UE CONICET Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y NaturalesMar del PlataArgentina
  4. 4.Facultad de IngenieríaCoMP Instituto de Investigaciones en Ciencia y Tecnología de Materiales UE CONICET Universidad Nacional de Mar del PlataMar del PlataArgentina

Personalised recommendations