Advertisement

Nanocellulose-Polymer Composites: Novel Materials for Food Packaging Applications

  • A. K. Bharimalla
  • P. G. Patil
  • S. Mukherjee
  • V. Yadav
  • V. Prasad
Chapter

Abstract

Nanocellulose is a revolutionary bio-based nanomaterial that possesses remarkable properties and has potential application in different industries. As a biodegradable filler in the manufacture of composite materials, coating and self-standing thin films, it offers novel and promising properties. There are fewer revisions focused on the use of nanocellulose-impregnated composite materials for different food packaging applications. Researchers have reported that the use of nanocellulose as a reinforcement in biopolymers and synthetic polymers improves the mechanical and barrier properties of the composite material. In this chapter we provide an exhaustive review of recent advances in the synthesis of nanocellulose and its application as a filler to produce nanocomposites for food packaging.

Graphical Abstract

Open image in new window

Keywords

Biodegradable composite Green composite Nanocellulose biopolymer 

Notes

Acknowledgements

The authors are thankful to the Indian Council of Agricultural Research, New Delhi for supporting this work under World Bank funded National Agricultural Innovation Project (NAIP), through its sub-project entitled “Zonal Technology Management & Business Planning and Development Unit at Central Institute for Research on Cotton Technology, Mumbai”.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M., & Miraki, R. (2013). Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. International Journal of Biological Macromolecules, 54, 166–173.  https://doi.org/10.1016/j.ijbiomac.2012.12.016.CrossRefPubMedGoogle Scholar
  2. Abraham, E., Elbi, P. A., Deepa, B., Jyotishkumar, P., Pothen, L. A., Narine, S. S., & Thomas, S. (2012). X-ray diffraction and biodegradation analysis of green composites of natural rubber/nanocellulose. Polymer Degradation and Stability, 97(11), 2378–2387.  https://doi.org/10.1016/j.polymdegradstab.2012.07.028.CrossRefGoogle Scholar
  3. Alam, T. (2013). Food packaging industry: Current, future prospects. FnBnews.com. Available at: http://www. fnbnews.com/FB-Specials/Food-packaging-industry-Current-future-prospects.
  4. Alemdar, A., & Sain, M. (2008). Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology, 68(2), 557–565.  https://doi.org/10.1016/j.compscitech.2007.05.044.CrossRefGoogle Scholar
  5. Álvarez, K., Famá, L., & Gutiérrez, T. J. (2017). Chapter 12. Physicochemical, antimicrobial and mechanical properties of thermoplastic materials based on biopolymers with application in the food industry. In M. Masuelli & D. Renard (Eds.), Advances in physicochemical properties of biopolymers: Part 1 (pp. 358–400). Bentham Science Publishers. EE.UU. ISBN: 978-1-68108-454-1. eISBN: 978-1-68108-453-4.  https://doi.org/10.2174/9781681084534117010015.CrossRefGoogle Scholar
  6. Álvarez, K., Alvarez, V. A., & Gutiérrez, T. J. (2018). Chapter 3. Biopolymer composite materials with antimicrobial effects applied to the food industry. In V. K. Thakur & M. K. Thakur (Eds.), Functional biopolymers (pp. 57–96). Editorial Springer International Publishing. EE.UU. ISBN: 978-3-319-66416-3. eISBN: 978-3-319-66417-0.  https://doi.org/10.1007/978-3-319-66417-0_3.Google Scholar
  7. Andresen, M., Stenstad, P., Møretrø, T., Langsrud, S., Syverud, K., Johansson, L. S., & Stenius, P. (2007). Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules, 8(7), 2149–2155.  https://doi.org/10.1021/bm070304e.CrossRefPubMedGoogle Scholar
  8. Anonymous. (n.d.). Emerging packaging markets potentials and trends in the packaging industries in India, Russia and China. Volume Available at: https://www.interpackalliance.com/cgi-bin/md_interpack/lib/all/lob/return_download.cgi/Factbook_GB.pdf?ticket=g_u_e_s_t&bid=4670&no_mime_type=0.
  9. Arora, A., & Padua, G. W. (2010). Review: Nanocomposites in food packaging. Journal of Food Science, 75(1), 43–49.  https://doi.org/10.1111/j.1750-3841.2009.01456.x.CrossRefGoogle Scholar
  10. Arrieta, M. P., Fortunati, E., Dominici, F., Rayon, E., Lopez, J., & Kenny, J. M. (2014). PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties. Polymer Degradation and Stability, 10, 139–149.  https://doi.org/10.1016/j.polymdegradstab.2014.05.010.CrossRefGoogle Scholar
  11. Astrom, B. T. (1997). Introduction to composites, composites manufacturing and other post-design issues. Manufacturer Polymer Composites, 8, 1–8.Google Scholar
  12. Aulin, C., Gallstedt, M., & Lindstrom, T. (2010). Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose, 17(3), 559–574.  https://doi.org/10.1007/s10570-009-9393-y.CrossRefGoogle Scholar
  13. Aulin, C., Salazar-Alvarez, G., & Lindstrom, T. (2012). High strength, flexible and transparent nanofibrillated cellulose–nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale, 4, 6622–6628.CrossRefGoogle Scholar
  14. Azeredo, H. M., Mattoso, L. H., Avena-Bustillos, R. J. A., Filho, G. C., Munford, M. L., Wood, D., & Mchugh, T. H. (2010). Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. Journal of Food Science, 75(1), N1–N7.  https://doi.org/10.1111/j.1750-3841.2009.01386.x.CrossRefPubMedGoogle Scholar
  15. Barari, B., Ellingham, T. K., Ghamhia, I. I., Pillai, K. M., El-Hajjar, R., Turng, L.-S., & Sabo, R. (2016). Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process. Composites Part B, 84, 277–284.  https://doi.org/10.1016/j.compositesb.2015.08.040.CrossRefGoogle Scholar
  16. Berger, K. R. (2002). A brief history of packaging. ABE321, Agricultural and Biological Engineering Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, pp. 1–5.Google Scholar
  17. Bhattacharya, D., Germinario, L. T., & Winter, W. T. (2008). Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydrate Polymers, 73(3), 371–377.  https://doi.org/10.1016/j.carbpol.2007.12.005.CrossRefGoogle Scholar
  18. Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Progress in Polymer Science, 24(2), 221–274.  https://doi.org/10.1016/S0079-6700(98)00018-5.CrossRefGoogle Scholar
  19. Bochek, A. M., Shevchuk, I. L., & Lavrentev, V. N. (2003). Fabrication of microcrystallinecellulose and powdered cellulose from short flax fiber and flax straw. Russian Journal of Applied Chemistry, 76(10), 1679–1682.  https://doi.org/10.1023/b:rjac.0000015737.07117.12.CrossRefGoogle Scholar
  20. Boumail, A., Salmieri, S., Klimas, E., Tawema, P. O., Bouchard, J., & Lacroix, M. (2013). Characterization of trilayer antimicrobial diffusion films (ADFs) based on methylcellulose-polycaprolactone composites. Journal of Agricultural and Food Chemistry, 61(4), 811–821.  https://doi.org/10.1021/jf304439s.CrossRefPubMedGoogle Scholar
  21. Bracone, M., Merino, D., González, J., Alvarez, V. A., & Gutiérrez, T. J. (2016). Chapter 6. Nanopackaging from natural fillers and biopolymers for the development of active and intelligent films. In S. Ikram & S. Ahmed (Eds.), Natural polymers: derivatives, blends and composites (pp. 119–155). New York. EE.UU. ISBN: 978-1-63485-831-1: Editorial Nova Science Publishers, Inc.Google Scholar
  22. Brandt, A., Hallett, J. P., Leak, D. J., Murphy, R. J., & Welton, T. (2010). The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chemistry, 12(4), 672–679.  https://doi.org/10.1039/b918787a.CrossRefGoogle Scholar
  23. Bras, J., Hassan, M. L., Bruzesse, C., Hassan, E. A., El-Wakil, N. A., & Dufresne, A. (2010). Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Industrial Crops and Products, 32(3), 627–633.  https://doi.org/10.1016/j.indcrop.2010.07.018.CrossRefGoogle Scholar
  24. Bras, J., Viet, D., Bruzzese, C., & Dufresne, A. (2011). Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohydrate Polymers, 84(1), 211–215.  https://doi.org/10.1016/j.carbpol.2010.11.022.CrossRefGoogle Scholar
  25. Braun, B., Dorgan, J. R., & Hollingsworth, L. O. (2012). Supra-molecular ecobionanocomposites based on polylactide and cellulosic nanowhiskers: Synthesis and properties. Biomacromolecules, 13(7), 2013–2019.  https://doi.org/10.1021/bm300149w.CrossRefPubMedGoogle Scholar
  26. Bruce, D. M., Hobson, R. N., Farrent, J. W., & Hepworth, D. G. (2005). High-performance composites from low-cost plant primary cell walls. Composites Part A: Applied Science and Manufacturing, 36(11), 1486–1493.  https://doi.org/10.1016/j.compositesa.2005.03.008.CrossRefGoogle Scholar
  27. Buonocore, G., Iannace, S. (2013, February/March). Molecular and supramolecu- lar design for active and edible packaging systems, food safety magazine, packaging.Google Scholar
  28. Butschli, J. (2016). Modest growth for global packaging demand through 2020. Available at https://www.healthcarepackaging.com/article/trends-and-issues/global/modest-growth-global-packaging-demand-through-2020.
  29. Cai, Z. J., Guang, Y., & Kim, J. (2011). Biocompatible nanocom- posites prepared by impregnating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Current Applied Physics, 11(2), 247–249.  https://doi.org/10.1016/j.cap.2010.07.016.CrossRefGoogle Scholar
  30. Cha, D. S., & Chinnan, M. J. (2004). Biopolymer based antimicrobial packaging: a review. Critical Reviews in Food Science and Nutrition, 44(4), 223–237.  https://doi.org/10.1080/10408690490464276.CrossRefPubMedGoogle Scholar
  31. Chaffee, C., & Yoros, B.R. (2007). Life cycle assessment for three types of grocery bags–Recyclable plastics, compo- stable, biodegradable plastic and recyclable paper. Final Report, Boustead Consulting and Associates Limited: Ardmore.Google Scholar
  32. Chambi, H. N. M., & Grosso, C. R. F. (2011). Mechanical and water vapor permeability properties of biodegradables films based on methycellulose, glucomannan, pectin and gelatin. Ciencia a Tecnologia de Alimentos, 31(3), 739–746.  https://doi.org/10.1590/S0101-20612011000300029.CrossRefGoogle Scholar
  33. Chazeau, L., Cavaille, J. Y., Canova, G., Dendievel, R., & Boutherin, B. (1999). Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers. Journal of Applied Polymer Science, 71(11), 1797–1808.  https://doi.org/10.1002/(sici)1097-4628(19990314)71:11<1797::aid-app9>3.0.co;2-e.CrossRefGoogle Scholar
  34. Chen, G., Dufresne, A., Huang, J., & Chang, P. R. (2009). A Novel thermo-formable bionanocomposite based on cellulose-nanocrystal-graft-poly (ε-caprolactone). Macromolecular Materials and Engineering, 294(1), 59–67.  https://doi.org/10.1002/mame.200800261.CrossRefGoogle Scholar
  35. Chen, W. S., Yu, H., Liu, Y. X., Chen, P., Zhang, M. X., & Hai, Y. F. (2011). Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83(4), 1804–1811.  https://doi.org/10.1016/j.carbpol.2010.10.040.CrossRefGoogle Scholar
  36. Cherian, B. M., Leao, A. L., Souza, S. F., Thomas, S., Pothan, L. A., & Kottaisamy, M. (2010). Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers, 81(3), 720–725.  https://doi.org/10.1016/j.carbpol.2010.03.046.CrossRefGoogle Scholar
  37. Ching, Y. C., Rahman, A., Ching, K. Y., Sukiman, N. L., & Chuah, C. H. (2015). Preparation and characterization of polyvinyl alcohol composite reinforced with nanocellulose and nanosilica. BioResources, 10(2), 3364–3377.CrossRefGoogle Scholar
  38. Ciesla, K., Abramowska, A., Buczowski, M., Gluszewski Łuszewski, W., Nowicki, A., Boguski, J., Sartowska, B., & Strzelczak, G. (2014). Based on starch-PVA system and cellulose reinforced packaging materials prepared using radiation modification. Report of the 2nd RCM on Application of radiation technology in the development of advanced packaging materials for food products, 8–12 September, Bejaia, pp. 14–26.Google Scholar
  39. Cristaldi, G., Latteri, A., Recca, G., & Cicala, G. (2010). Composites based on natural fibre fabrics. In P. D. Dubrovski (Ed.), Woven fabric engineering (pp. 317–342).  https://doi.org/10.5772/10465.CrossRefGoogle Scholar
  40. Darmadji, P., & Izumimoto, M. (1994). Effect of chitosan in meat preservation. Meat Science, 38(2), 243–254.  https://doi.org/10.1016/0309-1740(94)90114-7.CrossRefPubMedGoogle Scholar
  41. de Azeredo, H. M. C. (2009). Nanocomposites for food packaging applications. Foodservice Research International, 42(9), 1240–1253.  https://doi.org/10.1016/j.foodres.2009.03.019.CrossRefGoogle Scholar
  42. De Menezes, A. J., Siqueira, G., Curvelo, A. A., & Dufresne, A. (2009). Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer, 50(19), 4552–4563.  https://doi.org/10.1016/j.polymer.2009.07.038.CrossRefGoogle Scholar
  43. Dehnad, D., Emam-Djomeh, Z., Mirzaei, H., Jafari, S. M., & Dadashi, S. (2014). Optimization of physical and mechanical properties for chitosan–nanocellulose biocomposites. Carbohydrate Polymers, 105, 222–228.CrossRefGoogle Scholar
  44. Denault, J., & Labrecque, B. (2004). Technology group on polymer nanocomposites–PNC-Tech. Industrial Materials Institute. National Research Council Canada, 75 de Mortagne Blvd. Boucherville, Québec, J4B 6Y4.Google Scholar
  45. Denoyelle, T. (2011). Mechanical properties of materials made of nano-cellulose. In Degree project in solid mechanics. Stockholm: Royal Institute of Technology (KTH).Google Scholar
  46. Deo, C. (2010). Preparation and characterization of polymer matrix composite using natural fiber lantana-camara. Doctoral dissertation. National Institute of Technology, Rourkela.Google Scholar
  47. Doree, C. (1947). The methods of cellulose chemistry including methods for the investigation of substances associated with cellulose in plant tissues (p. 543). London: Chapman and Hall.Google Scholar
  48. Dufresne, A. (2012). Nanocellulose: From nature to high performance tailored materials. Berlin: Walter de Gruyter GmbH & Co.CrossRefGoogle Scholar
  49. Dufresne, A. (2013). Nanocellulose: a new ageless bionanomaterial. Materials Today, 16(6), 220–227.  https://doi.org/10.1016/j.mattod.2013.06.004.CrossRefGoogle Scholar
  50. Dufresne, A., & Vignon, M. R. (1998). Improvement of starch film performances using cellulose microfibrils. Macromolecules, 31(8), 2693–2696.  https://doi.org/10.1021/ma971532b.CrossRefGoogle Scholar
  51. Dufresne, A., Dupeyre, D., & Vignon, M. R. (2000). Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. Journal of Applied Polymer Science, 76(14), 2080–2092.  https://doi.org/10.1002/(sici)1097-4628(20000628)76:14<2080::aid-app12>3.0.co;2-u.CrossRefGoogle Scholar
  52. Dufresne, A., Dupeyre, D., & Paillet, M. (2003). Lignocellulosic flour-reinforced poly (hydroxybutyrate-co-valerate) composites. Journal of Applied Polymer Science, 87(8), 1302–1315.  https://doi.org/10.1002/app.11546.CrossRefGoogle Scholar
  53. El-Wakil, N. A., Hassan, E., Raga, A., Abou-Zeid, E., & Dufresne, A. (2015). Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydrate Polymers, 124, 337–346.  https://doi.org/10.1016/j.carbpol.2015.01.076.CrossRefPubMedGoogle Scholar
  54. Favier, V., Chanzy, H., & Cavaille, J. Y. (1995). Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules, 28(18), 6365–6636.  https://doi.org/10.1021/ma00122a053.CrossRefGoogle Scholar
  55. Fortunati, E., Armentano, I., Zhou, Q., Iannoni, A., Saino, E., Visai, L., Berglund, L. A., & Kenny, J. M. (2012a). Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydrate Polymers, 87(2), 1596–1605.  https://doi.org/10.1016/j.carbpol.2011.09.066.CrossRefGoogle Scholar
  56. Fortunati, E., Peltzer, M., Armentano, I., Torre, L., Jimenez, A., & Kenny, J. M. (2012b). Effects of modified cellulose nanocrystals on the barrier and migration of PLA nano-composites. Carbohydrate Polymers, 90(2), 948–956.  https://doi.org/10.1016/j.carbpol.2012.06.025.CrossRefPubMedGoogle Scholar
  57. Fortunati, E., Peltzer, M., Armentano, I., Jimenez, A., & Kenny, J. M. (2013). Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. Journal of Food Engineering, 118(1), 117–124.  https://doi.org/10.1016/j.jfoodeng.2013.03.025.CrossRefGoogle Scholar
  58. Fujisawa, S., Ikeuchi, T., Takeuchi, M., Saito, T., & Isogai, A. (2012). Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromolecules, 13(7), 2188–2194.  https://doi.org/10.1021/bm300609c.CrossRefPubMedGoogle Scholar
  59. Gama, M., Gatenholm, P., & Klemm, D. (2012). Bacterial nano cellulose: A sophisticated multifunctional material (p. 304). Boca Raton: CRC Press. (ISBN 9781439869918).Google Scholar
  60. Garcia de Rodriguez, N. L., Thielemans, W., & Dufresne, A. (2006). Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose, 13(3), 261–270.  https://doi.org/10.1007/s10570-005-9039-7.CrossRefGoogle Scholar
  61. García, M. A., Pinotti, A., Martino, M. N., & Zaritzky, N. E. (2004). Characterization of composite hydrocolloid films. Carbohydrate Polymers, 56(3), 339–345.  https://doi.org/10.1016/j.carbpol.2004.03.003.CrossRefGoogle Scholar
  62. Ghaderi, M., Mousavi, M., Yoursefi, H., & Labbafi, M. (2014). All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydrate Polymers, 104, 59–65.  https://doi.org/10.1016/j.carbpol.2014.01.013.CrossRefPubMedGoogle Scholar
  63. Ghosh, S. B., & Sain, M. (2014). The use of biobased nanofibres in composites. In O. Faruk & M. Sain (Eds.), Biofiber reinforcements in composite materials (pp. 594–595). Oxford: Elsevier Science & Technology.  https://doi.org/10.1533/9781782421276.5.571.CrossRefGoogle Scholar
  64. Goffin, A. L., Raquez, J. M., Duquesne, E., Siqueira, G., Habibi, Y., Dufresne, A., & Dubois, P. (2011). Poly(ε-caprolactone) based nano-composites reinforced by surface-grafted cellulose nano-whiskers via extrusion processing: morphology, rheology and thermo-mechanical properties. Polymer, 52(7), 1532–1538.  https://doi.org/10.1016/j.polymer.2011.02.004.CrossRefGoogle Scholar
  65. Gois, G. S., Andrade, M. F., Garcia, S. M. S., Vinhas, G. M., Santos, A. S. F., Medeiros, E. S., Oliveira, J. E., & de Almeida, Y. M. S. (2018). Soil biodegradation of PLA/CNW nanocomposites modified with ethylene oxide derivatives. Materials Research, 1–6.  https://doi.org/10.1590/1980-5373-MR-2016-0960.CrossRefGoogle Scholar
  66. Gray, N., Hamzeh, Y., Kaboorani, A., & Abdulkhani, A. (2018). Influence of cellulose nanocrystal on strength and properties of low density polyethylene and thermoplastic starch composites. Industrial Crops and Products, 115, 298–305.  https://doi.org/10.1016/j.indcrop.2018.02.017.CrossRefGoogle Scholar
  67. Guangjun, C., Wei, M., Chen, J., Huang, J., Dufresne, A., & Chang, P. R. (2008). Simultaneous reinforcing and toughening: new nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals. Polymer, 49(7), 1860–1870.  https://doi.org/10.1016/j.polymer.2008.02.020.CrossRefGoogle Scholar
  68. Gutiérrez, T. J. (2017a). Chapter 8. Chitosan applications for the food industry. In: Chitosan: Derivatives, composites and applications. S. Ahmed, and S. Ikram (Eds). WILEY-Scrivener Publisher. EE.UU. ISBN: 978-1-119-36350-7. pp. 183–232.  https://doi.org/10.1002/9781119364849.ch8CrossRefGoogle Scholar
  69. Gutiérrez, T. J. (2017b). Surface and nutraceutical properties of edible films made from starchy sources with and without added blackberry pulp. Carbohydrate Polymers, 165, 169–179.  https://doi.org/10.1016/j.carbpol.2017.02.016.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Gutiérrez, T. J. (2018a). Are modified pumpkin flour/plum flour nanocomposite films biodegradable and compostable? Food Hydrocolloids, 83, 397–410.  https://doi.org/10.1016/j.foodhyd.2018.05.035.CrossRefGoogle Scholar
  71. Gutiérrez, T. J. (2018b). Active and intelligent films made from starchy sources/blackberry pulp. Journal Polymers and the Environment, 26(6), 2374–2391.  https://doi.org/10.1007/s10924-017-1134-y.CrossRefGoogle Scholar
  72. Gutiérrez, T. J. (2018c). Chapter 9. Biodegradability and compostability of food nanopackaging materials. In G. Cirillo, M. A. Kozlowski, & U. G. Spizzirri (Eds.), Composite materials for food packaging (pp. 269–296). WILEY-Scrivener Publisher. EE.UU. ISBN: 978-1-119-16020-5.  https://doi.org/10.1002/9781119160243.ch9.CrossRefGoogle Scholar
  73. Gutiérrez, T. J., & Alvarez, V. A. (2017a). Properties of native and oxidized corn starch/polystyrene blends under conditions of reactive extrusion using zinc octanoate as a catalyst. Reactive and Functional Polymers, 112, 33–44.  https://doi.org/10.1016/j.reactfunctpolym.2017.01.002.CrossRefGoogle Scholar
  74. Gutiérrez, T. J., & Alvarez, V. A. (2017b). Eco-friendly films prepared from plantain flour/PCL blends under reactive extrusion conditions using zirconium octanoate as a catalyst. Carbohydrate Polymers, 178, 260–269.  https://doi.org/10.1016/j.carbpol.2017.09.026.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Gutiérrez, T. J., & Alvarez, V. A. (2017c). Data on physicochemical properties of active films derived from plantain flour/PCL blends developed under reactive extrusion conditions. Data in Brief, 15, 445–448.  https://doi.org/10.1016/j.dib.2017.09.071.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Gutiérrez, T. J., & Alvarez, V. A. (2017d). Cellulosic materials as natural fillers in starch-containing matrix-based films: A review. Polymer Bulletin, 74(6), 2401–2430.  https://doi.org/10.1007/s00289-016-1814-0.CrossRefGoogle Scholar
  77. Gutiérrez, T. J., & Alvarez, V. A. (2018). Bionanocomposite films developed from corn starch and natural and modified nano-clays with or without added blueberry extract. Food Hydrocolloids, 77, 407–420.  https://doi.org/10.1016/j.foodhyd.2017.10.017.CrossRefGoogle Scholar
  78. Gutiérrez, T. J., Morales, N. J., Pérez, E., Tapia, M. S., & Famá, L. (2015a). Physico-chemical study of edible films based on native and phosphating cush-cush yam and cassava starches. Food Packaging and Shelf Life, 3, 1–8.  https://doi.org/10.1016/j.fpsl.2014.09.002.CrossRefGoogle Scholar
  79. Gutiérrez, T. J., Tapia, M. S., Pérez, E., & Famá, L. (2015b). Structural and mechanical properties of native and modified cush-cush yam and cassava starch edible films. Food Hydrocolloids, 45, 211–217.  https://doi.org/10.1016/j.foodhyd.2014.11.017.CrossRefGoogle Scholar
  80. Gutiérrez, T. J., Tapia, M. S., Pérez, E., & Famá, L. (2015c). Edible films based on native and phosphated 80:20 waxy: Normal corn starch. Starch-Stärke, 67(1-2), 90–97.  https://doi.org/10.1002/star.201400164.CrossRefGoogle Scholar
  81. Gutiérrez, T. J., Morales, N. J., Tapia, M. S., Pérez, E., & Famá, L. (2015d). Corn starch 80:20 “waxy”:regular, “native” and phosphated, as bio-matrixes for edible films. Procedia Materials Science, 8, 304–310.  https://doi.org/10.1016/j.mspro.2015.04.077.CrossRefGoogle Scholar
  82. Gutiérrez, T. J., Guzmán, R., Medina Jaramillo, C., & Famá, L. (2016a). Effect of beet flour on films made from biological macromolecules: native and modified plantain flour. International Journal of Biological Macromolecules, 82, 395–403.  https://doi.org/10.1016/j.ijbiomac.2015.10.020.CrossRefGoogle Scholar
  83. Gutiérrez, T. J., Suniaga, J., Monsalve, A., & García, N. L. (2016b). Influence of beet flour on the relationship surface-properties of edible and intelligent films made from native and modified plantain flour. Food Hydrocolloids, 54, 234–244.  https://doi.org/10.1016/j.foodhyd.2015.10.012.CrossRefGoogle Scholar
  84. Gutiérrez, T. J., González Seligra, P., Medina Jaramillo, C., Famá, L., & Goyanes, S. (2017a). Chapter 14. Effect of filler properties on the antioxidant response of thermoplastic starch composites. In V. K. Thakur, M. K. Thakur, & M. R. Kessler (Eds.), Handbook of composites from renewable materials (pp. 337–370). WILEY-Scrivener Publisher. EE.UU. ISBN: 978-1-119-22362-7.  https://doi.org/10.1002/9781119441632.ch14.CrossRefGoogle Scholar
  85. Gutiérrez, T. J., Ponce, A. G., & Alvarez, V. A. (2017b). Nano-clays from natural and modified montmorillonite with and without added blueberry extract for active and intelligent food nanopackaging materials. Materials Chemistry and Physics, 194, 283–292.  https://doi.org/10.1016/j.matchemphys.2017.03.052.CrossRefGoogle Scholar
  86. Gutiérrez, T. J., Ollier, R., & Alvarez, V. A. (2018a). Chapter 5. Surface properties of thermoplastic starch materials reinforced with natural fillers. In V. K. Thakur & M. K. Thakur (Eds.), Functional biopolymers (pp. 131–158). Editorial Springer International Publishing. EE.UU. ISBN: 978-3-319-66416-3. eISBN: 978-3-319-66417-0.  https://doi.org/10.1007/978-3-319-66417-0_5.Google Scholar
  87. Gutiérrez, T. J., Herniou--Julien, C., Álvarez, K., & Alvarez, V. A. (2018b). Structural properties and in vitro digestibility of edible and pH-sensitive films made from guinea arrowroot starch and wastes from wine manufacture. Carbohydrate Polymers, 184, 135–143.  https://doi.org/10.1016/j.carbpol.2017.12.039.CrossRefGoogle Scholar
  88. Gutiérrez, T. J., Toro-Márquez, L. A., Merino, D., & Mendieta, J. R. (2019). Hydrogen-bonding interactions and compostability of bionanocomposite films prepared from corn starch and nano-fillers with and without added Jamaica flower extract. Food Hydrocolloids, 89, 283–293.  https://doi.org/10.1016/j.foodhyd.2018.10.058.CrossRefGoogle Scholar
  89. Habibi, Y., & Vignon, M. R. (2008). Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose, 15(1), 177–185.  https://doi.org/10.1007/s10570-007-9179-z.CrossRefGoogle Scholar
  90. Henriksson, M., Henriksson, G., Berglund, L. A., & Lindstrorn, T. (2007). An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal, 43(8), 3434–3441.  https://doi.org/10.1016/j.eurpolymj.2007.05.038.CrossRefGoogle Scholar
  91. Herniou--Julien, C., Mendieta, J. R., & Gutiérrez, T. J. (2019). Characterization of biodegradable/non-compostable films made from cellulose acetate/corn starch blends processed under reactive extrusion conditions. Food Hydrocolloids, 89, 67–79.  https://doi.org/10.1016/j.foodhyd.2018.10.024.CrossRefGoogle Scholar
  92. Hook, P., & Heimlich, J.E. (2011). A history of packaging CDFS-133, Ohio State University Fact Sheet, Community Development, Columbus. Available at: ohioline.osu.edu/cd-fact/0133.
  93. Hubbe, M. A., Rojas, O. J., Lucia, L. A., & Sain, M. (2008). Cellulosic nanocomposites: A review. BioResources, 3(3), 929–980.Google Scholar
  94. Hussain, F., Hojjati, M., Okamoto, M., & Gorga, R. E. (2006). Polymer-matrix nanocomposites, processing, manufacturing and application: An overview. Journal of Composite Materials, 40(17), 1511–1575.  https://doi.org/10.1177/0021998306067321.CrossRefGoogle Scholar
  95. Istvan, S., & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose, 17(3), 459–494.  https://doi.org/10.1007/s10570-010-9405-y.CrossRefGoogle Scholar
  96. Iwamoto, S., Kai, W., Isogai, A., & Iwata, T. (2009). Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules, 10(9), 2571–2576.  https://doi.org/10.1021/bm900520n.CrossRefPubMedGoogle Scholar
  97. Jahan, M. S., Saeed, A., Zhibin, H., & Ni, Y. (2011). Jute as raw material for the preparation of microcrystalline cellulose. Cellulose, 18(2), 451–459.  https://doi.org/10.1007/s10570-010-9481-z.CrossRefGoogle Scholar
  98. Jerome, C., & Lecomte, P. (2008). Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Advanced Drug Delivery Reviews, 60(9), 1056–1076.  https://doi.org/10.1016/j.addr.2008.02.008.CrossRefPubMedGoogle Scholar
  99. Jo, C., Lee, J. W., Lee, K. H., & Byun, M. W. (2001). Quality properties of pork sausage prepared with water- soluble chitosan oligomer. Meat Science, 59(4), 369–375.  https://doi.org/10.1016/S0309-1740(01)00089-4.CrossRefPubMedGoogle Scholar
  100. John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343–364.  https://doi.org/10.1016/j.carbpol.2007.05.040.CrossRefGoogle Scholar
  101. Jonoobi, M., Harun, J., Mathew, A. P., & Oksman, K. (2010). Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Composites Science and Technology, 70(12), 1742–1747.  https://doi.org/10.1016/j.compscitech.2010.07.005.CrossRefGoogle Scholar
  102. Karande, V.S. (2013). Polymer composites based on cellulosics nanomaterials. Doctoral Thesis. 59. Available at: http://hdl.handle.net/10603/13586.
  103. Kaushik, A., & Grewal, R. G. (2011). Thermal behaviour of nanocomposites based on glycerol plasticized thermoplastic starch and cellulose nanocrystallites. AIP Conference Proceedings., 1393(1), 353–354.  https://doi.org/10.1063/1.3653755.CrossRefGoogle Scholar
  104. Kaushik, A., & Singh, M. (2011). Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydrate Polymers, 346(1), 76–85.  https://doi.org/10.1016/j.carres.2010.10.020.CrossRefGoogle Scholar
  105. Keeratiurai, M., & Corredig, M. (2009). Effect of dynamic high pressure homogenization on the aggregation state of soy protein. Journal of Agricultural and Food Chemistry, 57(9), 3556–3562.  https://doi.org/10.1021/jf803562q.CrossRefGoogle Scholar
  106. Khan, R. A., Salmieri, S., Dussault, D., Calderon, J. U., Kamal, M. R., Safrany, A., & Lacroix, M. (2010). Production and properties of nanocellulose reinforced methylcellu- lose-based biodegradable films. Journal of Agricultural and Food Chemistry, 58(13), 7878–7885.  https://doi.org/10.1021/jf1006853.CrossRefPubMedGoogle Scholar
  107. Khan, A., Salmieri, S., Fraschini, C., Bouchard, J., Riedl, B., & LAcroix, M. (2014). Genipin cross-linked nanocomposite films for the immobilization of antimicrobial agent. ACS Applied Materials & Interfaces, 6(17), 15232–15242.  https://doi.org/10.1021/am503564m.CrossRefGoogle Scholar
  108. Khoskhava, V. (2014). Polypropylene (PP) nanocomposites incorporating nanocrystalline cellulose (NCC).Ph. D. Thesis, McGill University, Montreal.Google Scholar
  109. Klemm, D. (2005). Cellulose for fascinating biopolymer and sustainable raw material. Polymer Science, 44(22), 3358–3393.  https://doi.org/10.1002/anie.200460587.CrossRefGoogle Scholar
  110. Klemm, D., Kramer, F., Moritz, S., Lindstrom, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: A new family of nature-based materials. Angewandte Chemie, International Edition, 50(24), 5438–5466.  https://doi.org/10.1002/anie.201001273.CrossRefGoogle Scholar
  111. Kumar, A. P., Depan, D., Singh Tomer, N., & Singh, R. P. (2009). Nanoscale particles for polymer degradation and stabilization-Trends and future perspectives. Progress in Polymer Science, 34(6), 479–515.  https://doi.org/10.1016/j.progpolymsci.2009.01.002.CrossRefGoogle Scholar
  112. Lacerda, P. S. S., Barros-Timmons, A. M. M. V., Freire, C. S. R., Silvestre, A. J. D., & Neto, C. P. (2013). Nanostructured composites obtained by ATRP sleeving of bacterial cellulose nanofibers with acrylate polymers. Biomacromolecules, 14(6), 2063–2073.  https://doi.org/10.1021/bm400432b.CrossRefPubMedGoogle Scholar
  113. Lavoine, N., Desloges, I., Dufresne, A., & Bras, J. (2012). Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers, 90(2), 735–764.  https://doi.org/10.1016/j.carbpol.2012.05.026.CrossRefPubMedGoogle Scholar
  114. Lavoine, N., Desloges, I., & Bras, J. (2014). Microfibrillated cellulose coatings as new release systems for active packaging. Carbohydrate Polymers, 103, 528–537.  https://doi.org/10.1016/j.carbpol.2013.12.035.CrossRefPubMedGoogle Scholar
  115. Lee, S. Y., Chun, S. J., Kang, I. A., & Park, J. Y. (2009a). Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. Journal of Industrial and Engineering Chemistry, 15(1), 50–55.  https://doi.org/10.1016/j.jiec.2008.07.008.CrossRefGoogle Scholar
  116. Lee, S. Y., Mohan, D. J., Kang, I. A., Doh, G. H., Lee, S., & Han, S. O. (2009b). Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading. Fibers and Polymers, 10(1), 77–82.  https://doi.org/10.1007/s12221-009-0077-x.CrossRefGoogle Scholar
  117. Li, J., Wei, X., Wang, Q., Chen, J., Chang, G., Kong, L., Su, J., & Liu, Y. (2012). Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydrate Polymers, 90(4), 1609–1613.  https://doi.org/10.1016/j.carbpol.2012.07.038.CrossRefPubMedGoogle Scholar
  118. Lin, N., Chen, G., Huang, J., Dufresne, A., & Chang, P. R. (2009). Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly (lactic acid): A case of cellulose whisker-graft-polycaprolactone. Journal of Applied Polymer Science, 113(5), 3417–3425.  https://doi.org/10.1002/app.30308.CrossRefGoogle Scholar
  119. Liu, L. M., Qi, Z. N., & Zhu, X. G. (1999). Studies on nylon 6/clay nanocomposites by melt-intercalation process. Journal of Applied Polymer Science, 71(7), 1133–1138.  https://doi.org/10.1002/(sici)1097-4628(19990214)71:7<1133::aid-app11>3.0.co;2-n.CrossRefGoogle Scholar
  120. Ljungberg, N., & Wesslén, B. (2002). The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). Journal of Applied Polymer Science, 86, 1227.CrossRefGoogle Scholar
  121. Lonnberg, H., Fogelstrom, L., Zhou, Q., Hult, A., Berglund, L., & Malmstrom, E. (2011). Investigation of graft length impact on the interfacial toughness in a cellulose/poly (epsilon-caprolactone) bilayer laminate. Composites Science and Technology, 71(1), 9–12.  https://doi.org/10.1016/j.compscitech.2010.09.007.CrossRefGoogle Scholar
  122. Luzi, F., Fortunati, E., Puglia, D., Petrucci, R., Kenny, J. M., & Torre, L. (2015). Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia oceanica. Polymer Degradation and Stability, 121, 105–115.  https://doi.org/10.1016/j.polymdegradstab.2015.08.016.CrossRefGoogle Scholar
  123. Mabrouk, A. B., Kaddami, H., Magnin, A., Belgacem, M. N., Dufresne, A., & Boufi, S. (2011). Preparation of nanocomposite dispersions based on cellulose whiskers and acrylic copolymer by miniemulsion polymerization: Effect of the silane content. Polymer Engineering and Science, 51(1), 62–70.  https://doi.org/10.1002/pen.21778.CrossRefGoogle Scholar
  124. Machado, B. A. S., Nunes, I. L., Pereira, F. V., & Druzian, J. I. (2012). Development and evaluation of the effectiveness of biodegradable films of cassava starch with nanocellulose as reinforcement and yerba mate extract as an additive antioxidant. Ciencia Rural, 42(11), 2085–2091.  https://doi.org/10.1590/S0103-84782012001100028.CrossRefGoogle Scholar
  125. Maiti, S., Sain, S., Ray, D., & Mitra, D. (2013). Biodegradation behaviour of PMMA/cellulose nanocomposites prepared by in-situ polymerization and ex-situ dispersion methods. Polymer Degradation and Stability, 98(2), 635–642.  https://doi.org/10.1016/j.polymdegradstab.2012.11.011.CrossRefGoogle Scholar
  126. Mandal, A., & Chakrabarty, D. (2011). Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86(3), 1291–1299.  https://doi.org/10.1016/j.carbpol.2011.06.030.CrossRefGoogle Scholar
  127. Mandal, A., & Chakraborty, D. (2015). Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) and polyacrylamide composite films. Carbohydrate Polymer, 134, 240–250.  https://doi.org/10.1016/j.carbpol.2015.07.093.CrossRefGoogle Scholar
  128. Marsh, K., & Bugusu, B. (2007). Food packaging – roles, materials, and environmental issues. Journal of Food Science, 72(3), R39–R55.  https://doi.org/10.1111/j.1750-3841.2007.00301.x.CrossRefPubMedGoogle Scholar
  129. Merino, D., Mansilla, A. Y., Gutiérrez, T. J., Casalongué, C. A., & Alvarez, V. A. (2018a). Chitosan coated-phosphorylated starch films: Water interaction, transparency and antibacterial properties. Reactive and Functional Polymers, 131, 445–453.  https://doi.org/10.1016/j.reactfunctpolym.2018.08.012.CrossRefGoogle Scholar
  130. Merino, D., Gutiérrez, T. J., Mansilla, A. Y., Casalongué, C., & Alvarez, V. A. (2018b). Critical evaluation of starch-based antibacterial nanocomposites as agricultural mulch films: Study on their interactions with water and light. ACS Sustainable Chemistry & Engineering, 6(11), 15662–15672.  https://doi.org/10.1021/acssuschemeng.8b04162.CrossRefGoogle Scholar
  131. Merino, D., Gutiérrez, T. J., & Alvarez, V. A. (2019a). Potential agricultural mulch films based on native and phosphorylated corn starch with and without surface functionalization with chitosan. Journal Polymers and the Environment, 27(1), 97–105.  https://doi.org/10.1007/s10924-018-1325-1.CrossRefGoogle Scholar
  132. Merino, D., Gutiérrez, T. J., & Alvarez, V. A. (2019b). Structural and thermal properties of agricultural mulch films based on native and oxidized corn starch nanocomposites. Starch-Stärke, 71(7–8), 1800341.  https://doi.org/10.1002/star.201800341.
  133. Messersmith, P. B., & Giannelis, E. P. (1995). Synthesis and barrier properties of poly(ε-caprolactone)-layered silicate nanocomposites. Journal of Polymer Science Part A: Polymer Chemistry, 33(7), 1047.  https://doi.org/10.1002/pola.1995.080330707.CrossRefGoogle Scholar
  134. Mittal, V. (2011, September) Nanocomposites with biodegradable polymers synthesis, properties, and future perspectives. 1020. Print ISBN-13: 9780199581924, Published to Oxford Scholarship Online:  https://doi.org/10.1093/acprof:oso/9780199581924.001.0001.
  135. Moran, J. I., Alvarez, V. A., Cyras, V. P., & Vazquez, A. (2008). Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, 15(1), 149–159.  https://doi.org/10.1007/s10570-007-9145-9.CrossRefGoogle Scholar
  136. Morena, J. J. (1988). Advanced composites mold making. New York: Van Nostrand Reinhold. (ISBN 0-442-26414-3).Google Scholar
  137. Nair, S. S., Zhu, J. Y., Deng, Y., & Ragauskas, A. J. (2014). High performance green barriers based on nanocellulose. Sustainable Chemical Processes, 2, 23.  https://doi.org/10.1186/s40508-014-0023-0.CrossRefGoogle Scholar
  138. Nakagaito, A. N., & Yano, H. (2008). The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose, 15(4), 555–559.  https://doi.org/10.1007/s10570-008-9212-x.CrossRefGoogle Scholar
  139. Nelson, Y. U., Edgardo, A. G., & Ana, A. W. (2000). Microcrystalline cellulose from soybean husk: Effects of solvent treatments on its properties as acetylsalicylic acid carrier. International Journal of Pharmaceutics, 206(1-2), 85–96.  https://doi.org/10.1016/S0378-5173(00)00532-9.CrossRefGoogle Scholar
  140. Nishino, T., Matsuda, I., & Hirao, K. (2004). All-cellulose composite. Macromolecules, 37(20), 7683–7687.  https://doi.org/10.1021/ma049300h.CrossRefGoogle Scholar
  141. Nogi, M., & Yano, H. (2008). Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Advanced Materials, 20(10), 1849–1852.  https://doi.org/10.1002/adma.200702559.CrossRefGoogle Scholar
  142. Nogi, M., Iwamoto, S., Nakagaito, A. N., & Yano, H. (2009). Optically transparent nanofiber paper. Advanced Materials, 21(16), 1595–1598.  https://doi.org/10.1002/adma.200803174.CrossRefGoogle Scholar
  143. Nystrom, G., Mihranyan, A., Razaq, A., Lindstrom, T., Nyholm, L., & Stromme, M. (2010). A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. The Journal of Physical Chemistry B, 114(12), 4178–4182.  https://doi.org/10.1021/jp911272m.CrossRefPubMedPubMedCentralGoogle Scholar
  144. Ochsner, A., Ahmed, W., & Ali, N. (2009). Nanocomposite coatings and nanocomposite materials (pp. 326–396). Stafa-Zuerich: Trans Tech Publications Ltd..Google Scholar
  145. Oksman, K., Mathew, A. P., Bondeson, D., & Kvien, I. (2006). Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Composites Science and Technology, 66(15), 776–2784.  https://doi.org/10.1016/j.compscitech.2006.03.002.CrossRefGoogle Scholar
  146. Outwater, J. O. (2014). The mechanics of plastics reinforcement tension. Modern Plastics.http://www.automateddynamics.com/article/composite-basics/thermoset-vs-thermoplastic-composites.
  147. Paakko, M., Ankerfors, M., Kosonen, H., Nykanen, A., Ahola, S., Osterberg, M., Ruokolainen, J., Laine, J., Larsson, P. T., Ikkala, O., & Lindstrom, T. (2007). Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8(6), 1934–1941.  https://doi.org/10.1021/bm061215p.CrossRefPubMedGoogle Scholar
  148. Paine, F. A., & Paine, H. Y. (2012). A handbook of food packaging (p. 497). Springer.Google Scholar
  149. Paralikar, S. A., Simonsen, J., & Lombardi, J. (2008). Poly (vinyl alcohol)/cellulose nano-crystal barrier membranes. Journal of Membrane Science, 320(1-2), 248–258.  https://doi.org/10.1016/j.memsci.2008.04.009.CrossRefGoogle Scholar
  150. Payen, A., & Hebd, C. R. (1838). Mémoire sur la composition du tissu propre des plantes et du ligneux. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 7, 1052–1056.Google Scholar
  151. Peltzer, M., Pei, A., Zhou, Q., Berglund, L., & Jimenez, A. (2014). Surface modification of cellulose nanocrystals by grafting with poly(lactic acid). Polymer International, 63(6), 1056–1062.  https://doi.org/10.1002/pi.4610.CrossRefGoogle Scholar
  152. Pereda, M., Amica, G., Racz, L., Norma, E., & Marcovich, N. E. (2010). Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. Journal of Food Engineering, 103(1), 76–83.  https://doi.org/10.1016/j.jfoodeng.2010.10.001.CrossRefGoogle Scholar
  153. Pereira, A. L. S., do Nascimento, D. M., Souza Filho, M. M., Morais, J. P. S., Vasconcelos, N. F., Feitosa, J. P. A., Brigida, A. I. S., & Rosa, M. F. (2014). Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohydrate Polymers, 112, 165–172.  https://doi.org/10.1016/j.carbpol.2014.05.090.CrossRefPubMedGoogle Scholar
  154. Piermaria, J. A., Pinotti, A., Garcia, M. A., & Abraham, A. G. (2009). Films based on kefiran, an exopolysaccharide obtained from kefir grain: Development and characterization. Food Hydrocolloid, 2(3), 684–690.  https://doi.org/10.1016/j.foodhyd.2008.05.003.CrossRefGoogle Scholar
  155. Plackett, D., Anturi, H., Hedenqvist, M., Ankerfors, M., Gallstedt, M., Lindstrom, T., & Siro, I. (2010). Physical properties and morphology of films prepared from microfibrillated cellulose and microfibrillated cellulose in combination with amylopectin. Journal of Applied Polymer Science, 117(6), 3601–3609.  https://doi.org/10.1002/app.32254.CrossRefGoogle Scholar
  156. Plastic Make It Possible Report. (2010). Plastic innovations in packaging through the decades., Available at: www.platicsmakeitpossible.com/2010/05. Accessed 2 Oct 2015.
  157. Quievy, N., Jacquet, N., Sclavons, M., Deroanne, C., Paquot, M., & Devaux, J. (2010). Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. Polymer Degradation and Stability, 95(3), 306–314.  https://doi.org/10.1016/j.polymdegradstab.2009.11.020.CrossRefGoogle Scholar
  158. Raheem, D. (2012). Application of plastics and paper as food packaging materials – An overview. Emirates Journal of Food and Agriculture, 25(3), 177–188.  https://doi.org/10.9755/ejfa.v25i3.11509.CrossRefGoogle Scholar
  159. Ramos, O. L., Fernandes, J. C., Silva, S. I., Pintado, M. E., & Malcata, F. X. (2012). Edible films and coatings from whey proteins: A review on formulation, and on mechanical and bioactive peptides. Critical Reviews in Food Science and Nutrition, 52(6), 533–552.  https://doi.org/10.1080/10408398.2010.500528.CrossRefPubMedGoogle Scholar
  160. Reddy, J. P., & Rhim, J. W. (2014). Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydrate Polymers, 110, 480–488.  https://doi.org/10.1016/j.carbpol.2014.04.056.CrossRefPubMedPubMedCentralGoogle Scholar
  161. Revol, J. F., Godbout, L., & Gray, D. G. (1998). Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. Journal of Pulp and Paper Science, 24(5), 146–149.Google Scholar
  162. Risch, S. J. (2009). Food packaging history and innovations. Journal of Agricultural and Food Chemistry, 57(18), 8089–8092.  https://doi.org/10.1021/jf900040r.CrossRefPubMedGoogle Scholar
  163. Roohani, M., Habibi, Y., Belgacem, N. M., Ebrahim, G., Karimi, A. N., & Dufresne, A. (2008). Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. European Polymer Journal, 44(8), 2489–2498.  https://doi.org/10.1016/j.eurpolymj.2008.05.024.CrossRefGoogle Scholar
  164. Ruiz, M. M., Cavaille, J. Y., Dufresne, A., Gerard, J. F., & Graillat, C. (2000). Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Composite Interfaces, 7(2), 117–131.  https://doi.org/10.1163/156855400300184271.CrossRefGoogle Scholar
  165. Sainz, C. B., Bras, J., & Williams, T. (2011). HPMC reinforced with different cellulose nano-particles. Carbohydrate Polymers, 86(4), 1549–1557.  https://doi.org/10.1016/j.carbpol.2011.06.060.CrossRefGoogle Scholar
  166. Sakurada, I., Nukushina, Y., & Ito, T. (1962). Experimental determination of elastic modulus of crystalline regions in oriented polymers. Journal of Polymer Science, 57(165), 651–660.  https://doi.org/10.1002/pol.1962.1205716551.CrossRefGoogle Scholar
  167. Samir, M. A. S. A., Alloin, F., Sanchez, J.-Y., & Dufresne, A. (2004). Cellulose nanocrystals reinforced poly(oxyethylene). Polymer, 45(12), 4149–4157.  https://doi.org/10.1016/j.polymer.2004.03.094.CrossRefGoogle Scholar
  168. Sanchez-Garcia, M., & Lagaron, J. (2010). On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose, 17(5), 987–1004.  https://doi.org/10.1007/s10570-010-9430-x.CrossRefGoogle Scholar
  169. Sandeep, S. L., Viveka, S., Madhu Kumar, D. J., & Nagaraja, G. K. (2012). Preparation and properties of composite films from modified cellulose fibre-reinforced with PLA. Der Pharma Chemica, 4(1), 159–168.Google Scholar
  170. Sandler, S. R., Karo, W., Bonesteel, J.-A., & Pearce, E. M. (1998). Differential scanning calorimetry. In Polymer synthesis and characterization – A laboratory manual (Vol. 27, pp. 120–128). San Diego: Academic.CrossRefGoogle Scholar
  171. Satyanarayan, K. G., Arizaga, G. G. C., & Wypych, F. (2009). Biodegradable composites based on lignocellulosic fibers an overview. Progress in Polymer Science, 34, 982–1021.CrossRefGoogle Scholar
  172. Savadekar, N. R., & Mhaske, S. T. (2012). Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydrate Polymers, 89(1), 146–151.  https://doi.org/10.1016/j.carbpol.2012.02.063.CrossRefPubMedGoogle Scholar
  173. Savadekar, N. R., Karande, V. S., Vigneshwaran, N., Bharimalla, A. K., & Mhaske, S. T. (2012). Preparation of nano cellulose fibers and its application in kappa-carrageenan based film. International Journal of Biological Macromolecules, 51(5), 1008–1013.  https://doi.org/10.1016/j.ijbiomac.2012.08.014.CrossRefPubMedGoogle Scholar
  174. Saxena, A., & Ragauskas, A. J. (2009). Water transmission barrier properties of biodegradable films based on cellulosic whiskers and xylan. Carbohydrate Polymers, 78, 357–360.  https://doi.org/10.1016/j.carbpol.2009.03.039.CrossRefGoogle Scholar
  175. Saxena, A., Elder, T. J., Kenvin, J., & Ragauskas, A. J. (2010). High oxygen nanocomposite barrier films based on xylan and nanocrystalline cellulose. Nano-Micro Letters, 2(4), 235–241.  https://doi.org/10.1007/bf03353849.CrossRefGoogle Scholar
  176. Sedlarik, V., Otgonzul, O., Kitano, T., Gregorova, A., Hrabalova, M., Junkar, I., Cvelbar, U., Mozetic, M., & Saha, P. (2012). Effect of phase arrangement on solid state mechanical and thermalproperties of polyamide 6/polylactide based co-polyester blends. Journal of Macromolecular Science Part B, 51(5), 982–1001.  https://doi.org/10.1080/00222348.2011.610265.CrossRefGoogle Scholar
  177. Seydibeyoglu, M. O., & Oksman, K. (2008). Novel nanocomposites based on polyurethane and microfibrillated cellulose. Composites Science and Technology, 68(3-4), 908–914.  https://doi.org/10.1016/j.compscitech.2007.08.008.CrossRefGoogle Scholar
  178. Silvestre, C., Duraccio, D., & Cimmino, S. (2011). Food packaging based on polymer nanomaterials. Progress in Polymer Science, 36(12), 1766–1782.  https://doi.org/10.1016/j.progpolymsci.2011.02.003.CrossRefGoogle Scholar
  179. Sinha, S. R., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: A review from preparation to processing. Progress in Polymer Science, 28(11), 1539–1641.  https://doi.org/10.1016/j.progpolymsci.2003.08.002.CrossRefGoogle Scholar
  180. Siqueira, G., Bras, J., & Dufresne, A. (2009). Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules, 10(2), 425–432.  https://doi.org/10.1021/bm801193d.CrossRefPubMedGoogle Scholar
  181. Siqueira, G., Bras, J., & Dufresne, A. (2010). Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers, 2(4), 728–765.  https://doi.org/10.3390/polym2040728.CrossRefGoogle Scholar
  182. Siro, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17(3), 459–494.  https://doi.org/10.1007/s10570-010-9405-y.CrossRefGoogle Scholar
  183. Smith, S. A. (1986). Polyethylene, low density. In M. Bakker (Ed.), The wiley encyclopedia of packaging technology (pp. 514–523). New York: Wiley.Google Scholar
  184. Soeta, H., Fujisawa, S., Saito, T., Berglund, L., & Isogai, A. (2015). Low-birefringent and highly tough nanocellulose-reinforced cellulose triacetate. ACS Applied Materials & Interfaces, 7(20), 11041–11046.  https://doi.org/10.1021/acsami.5b02863.CrossRefGoogle Scholar
  185. Song, Z., Xiao, H., & Zhao, Y. (2014). Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohydrate Polymers, 111, 442–448.  https://doi.org/10.1016/j.carbpol.2014.04.049.CrossRefPubMedGoogle Scholar
  186. Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science and Technology, 18(2), 84–95.  https://doi.org/10.1016/j.tifs.2006.09.004.CrossRefGoogle Scholar
  187. Stuart, M. A. C., Hyck, W. T. S., Genzer, J., Muller, M., Ober, C., Stamm, M., Sukhorukov, G. B., Szleifer, I., Tsukruk, V. V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I., & Minko, S. (2010). Emerging applications of stimuli-responsive polymer materials. Nature Materials, 9, 101–113.  https://doi.org/10.1038/nmat2614.CrossRefPubMedGoogle Scholar
  188. Svagan, A. J., Hedenqvist, M. S., & Berglund, L. (2009). Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Composites Science and Technology, 69(3–4), 500–506.  https://doi.org/10.1016/j.compscitech.2008.11.016.CrossRefGoogle Scholar
  189. Teixeira, E. D. M., Pasquini, D., Curvelo, A. A., Corradini, E., Belgacem, M. N., & Dufresne, A. (2009). Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydrate Polymers, 78(3), 422–431.  https://doi.org/10.1016/j.carbpol.2009.04.034.CrossRefGoogle Scholar
  190. Tharanathan, R. N. (2003). Biodegradable films and composite coatings: Past, present and future. Trends in Food Science and Technology, 14(3), 71–78.  https://doi.org/10.1016/S0924-2244(02)00280-7.CrossRefGoogle Scholar
  191. Tice, P. (2003). Packaging materials 4. Polyethylene for food packaging applications. International Life Sciences Institute Report. Website: http://orig.ilsi.org/file/PM4_Polyethylene.pd.
  192. Tome, L. C., Fernandes, S. C. M., Perez, D. S., Sadocco, P., Silvestre, A. J. D., Neto, C. P., Marrucho, I. M., & Carmen, S. R. F. (2013). The role of nanocellulose fibers, starch and chitosan on multipolysaccharide based films. Cellulose, 20(4), 1807–1818.  https://doi.org/10.1007/s10570-013-9959-6.CrossRefGoogle Scholar
  193. Toro-Márquez, L. A., Merino, D., & Gutiérrez, T. J. (2018). Bionanocomposite films prepared from corn starch with and without nanopackaged Jamaica (Hibiscus sabdariffa) flower extract. Food and Bioprocess Technology, 11(11), 1955–1973.  https://doi.org/10.1007/s11947-018-2160-z.CrossRefGoogle Scholar
  194. Tsuji, H. (2005). Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromolecular Bioscience, 5(7), 569–597.  https://doi.org/10.1002/mabi.200500062.CrossRefPubMedGoogle Scholar
  195. Turbak, A. F., Snyder, F. W., & Sandberg, K. R. (1983). Microfibrillated cellulose, a new cellulose product: Properties, uses and commercial potential. Journal of Applied Polymer Science: Applied Polymer Symposium, 37, 815–827.Google Scholar
  196. Vaia, R. A., Ishii, H., & Giannelis, E. P. (1993). Synthesis and properties of two-dimensional nanostructure by direct intercalation of polymer melts in layered silicates. Chemistry of Materials, 5(12), 1694–1696.  https://doi.org/10.1021/cm00036a004.CrossRefGoogle Scholar
  197. van den Mooter, G., Samyn, C., & Kinget, R. (1994). Characterization of colon-specific azo polymers: A study of the swelling properties and the permeability of isolated polymer films. International Journal of Pharmaceutics, 111(2), 127–136.  https://doi.org/10.1016/0378-5173(94)00102-2.CrossRefGoogle Scholar
  198. Vink, E. T. H., Rabago, K. R., Glassner, D. A., Springs, B., O’Connor, R. P., Kolstad, J., & Gruber, P. R. (2004). The sustainability of NatureWorksTM polylactide polymers and IngeoTM polylactide fibers: An update of the future. Macromolecular Bioscience, 4(6), 551–564.  https://doi.org/10.1002/mabi.200400023.CrossRefPubMedGoogle Scholar
  199. Walker, C. (2012). Thinking small is leading to big changes, in Paper360°TAPPI, 8–13.Google Scholar
  200. Wan, W. K., Hutter, J. L., Millon, L. E., & Guhados, G. (2006). Bacterial cellulose and its nanocomposites for biomedical applications. ACS Symposium Series, 938, 221–241.CrossRefGoogle Scholar
  201. Welt, B. (2005). A brief history of packaging. Institute of Food and Agricultural Sciences, Document ABE321, University of Florida.Google Scholar
  202. Westman, M.P., Laddha, S.G., Fifield, L.S., Kafentzis, T. A., & Simmons, K.L. (2010). Natural fiber composites: A review. Prepared for the U.S. Department of Energy under Contract DE-AC05–76RL01830, PNNl-99352.Google Scholar
  203. Yakkan, E., Uysalman, T., Atagur, M., Kara, H., Sever, K., Yildirim, A., Girginer, B., & Seydibeyoglu, M. O. (2015). Nanocellulose-polypropylene nanocomposites enhanced with fusabond coupling agent. Journal of Bartin Faculty of Forestry, 20(3), 491–502.Google Scholar
  204. Yam, K. L., Takhistov, P. T., & Miltz, J. (2005). Intelligent packaging: Concepts and applications. Journal of Food Science, 70(1), R1–R10.  https://doi.org/10.1111/j.1365-2621.2005.tb09052.x.CrossRefGoogle Scholar
  205. Yu, J. F. A., Dufresne, A., Gao, S., Huang, J., & Chang, P. R. (2008). Structure and mechanical properties of poly(lactic acid) filled with (starch nanocrystal) -graft-poly(ε-caprolactone). Macromolecular Materials and Engineering, 293(9), 763–770.  https://doi.org/10.1002/mame.200800134.CrossRefGoogle Scholar
  206. Zhou, W., Apkarian, R.P., Wang, Z.L., Joy, D. (2006). Fundamentals of scanning electron microscopy. In: Zhou, W.W., Zhong, L. ed. Scanning microscopy for nanotechnology – Techniques and applications, Springer Verlag, pp. 1–40.  https://doi.org/10.1007/978-0-387-39620-0_1Google Scholar
  207. Zhou, C., Wua, Q., Yue, Y., & Zhang, Q. (2011). Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. Journal of Colloid and Interface Science, 353(1), 116–123.  https://doi.org/10.1016/j.jcis.2010.09.035.CrossRefPubMedGoogle Scholar
  208. Zhu, J. Y., Sabo, R., & Luo, X. (2011). Integrated production of nano-fibrillated cellulose and biofuel (Ethanol) by enzymatic fractionation of wood fibers. Green Chemistry, 13(5), 1339–1344.  https://doi.org/10.1039/c1gc15103g.CrossRefGoogle Scholar
  209. Zimmermann, T., Bordeanu, N., & Strub, E. (2010). Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers, 79(4), 1086–1093.  https://doi.org/10.1016/j.carbpol.2009.10.045.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. K. Bharimalla
    • 1
  • P. G. Patil
    • 1
  • S. Mukherjee
    • 1
  • V. Yadav
    • 2
  • V. Prasad
    • 2
  1. 1.ICAR-Central Institute for Research on Cotton TechnologyMumbaiIndia
  2. 2.Department of ChemistryInstitute of Science, Banaras Hindu UniversityVaranasiIndia

Personalised recommendations