Advertisement

Trends in the Manufacture of Coatings in the Postharvest Conservation of Fruits and Vegetables

  • Loveleen Sharma
  • Alok Saxena
  • Tanushree Maity
Chapter

Abstract

The deterioration of perishable commodities, such as fresh fruits and vegetables, is a major problem which results in a shorter shelf life with a compromised nutritional quality. Several techniques can be used to minimize the spoilage, such as the use of pesticides and fungicides during pre- harvest conditions, postharvest storage conditions at low temperature, the application of edible coatings along with chemical additives or natural plant extracts and different nanotechnological techniques such as the development of nanocapsules or multilayer systems, etc. Recently, the use of natural plant extracts or essential oils in edible coatings have been in trend. Polysaccharide-based edible films and coatings such as chitosan (Cs), alginate, starch; protein based edible films and coatings such as caseinate, whey protein isolates and lipid-based edible films and coatings such as beeswax, etc. have been used with the incorporation of plant extracts such as pomegranate peel extract, pineapple extract or incorporation of essential oils such as cinnamon oil, citrus oil, etc. to enhance the overall quality of the fruits or vegetables. In chapter the benefits of utilizing this technique in fresh fruits and vegetables contributing to a longer shelf life will be analyzed.

Keywords

Active packaging Edible polymers Modified atmosphere 

Notes

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Aloui, H., Khwaldia, K., Sánchez-González, L., Muneret, L., Jeandel, C., Hamdi, M., & Desobry, S. (2014). Alginate coatings containing grapefruit essential oil or grapefruit seed extract for grapes preservation. International Journal of Food Science & Technology, 49(4), 952–959.CrossRefGoogle Scholar
  2. Álvarez, K., Famá, L., & Gutiérrez, T. J. (2017). Chapter 12. Physicochemical, antimicrobial and mechanical properties of thermoplastic materials based on biopolymers with application in the food industry. In M. Masuelli & D. Renard (Eds.), Advances in physicochemical properties of biopolymers: Part 1 (pp. 358–400). Bentham Science Publishers. EE.UU. ISBN: 978-1-68108-454-1. eISBN: 978-1-68108-453-4.  https://doi.org/10.2174/9781681084534117010015.CrossRefGoogle Scholar
  3. Álvarez, K., Alvarez, V. A., & Gutiérrez, T. J. (2018). Chapter 3. Biopolymer composite materials with antimicrobial effects applied to the food industry. In V. K. Thakur & M. K. Thakur (Eds.), Functional biopolymers (pp. 57–96). Editorial Springer International Publishing. EE.UU. ISBN: 978-3-319-66416-3. eISBN: 978-3-319-66417-0.  https://doi.org/10.1007/978-3-319-66417-0_3.Google Scholar
  4. Alves, M. M., Goncalves, M. P., & Rocha, C. M. (2017). Effect of ferulic acid on the performance of soy protein isolate-based edible coatings applied to fresh-cut apples. LWT- Food Science and Technology, 80, 409–415.  https://doi.org/10.1016/j.lwt.2017.03.013.CrossRefGoogle Scholar
  5. Ansorena, M. R., Pereda, M., & Marcovich, N. E. (2018). Edible films. In T. J. Gutiérrez (Ed.), Polymers for food applications (pp. 5–24). Cham: Springer.  https://doi.org/10.1007/978-3-319-94625-2_2.CrossRefGoogle Scholar
  6. Azarakhsh, N., Osman, A., Ghazali, H. M., Tan, C. P., & Mohd Adzahan, N. (2012). Optimization of alginate and gellan-based edible coating formulations for fresh-cut pineapples. International Food Research Journal, 19(1), 279–285.Google Scholar
  7. Bai, J., Alleyne, V., Hagenmaier, R. D., Mattheis, J. P., & Baldwin, E. A. (2003). Formulation of zein coatings for apples (Malus Domestica Borkh). Postharvest Biology and Technology, 28(2), 259–268.  https://doi.org/10.1016/s0925-5214(02)00182-5.CrossRefGoogle Scholar
  8. Biswas, A., Selling, G. W., Woods, K. K., & Evans, K. (2009). Surface modification of zein films. Industrial Crop Production, 30(1), 168–171.  https://doi.org/10.1016/j.indcrop.2009.02.002.CrossRefGoogle Scholar
  9. Boumail, A., Salmieri, S., St-Yves, F., Lauzon, M., & Lacroix, M. (2016). Effect of antimicrobial coatings on microbiological, sensorial and physico-chemical properties of pre-cut cauliflowers. Postharvest Biology and Technology, 116, 1–7.  https://doi.org/10.1016/j.postharvbio.2015.12.017.CrossRefGoogle Scholar
  10. Bracone, M., Merino, D., González, J., Alvarez, V.A., Gutiérrez, T.J. (2016). Chapter 6. Nanopackaging from natural fillers and biopolymers for the development of active and intelligent films. In: Natural polymers: Derivatives, blends and composites. Ikram S. and Ahmed S. (Eds). Editorial Nova Science Publishers, Inc. New York. EE.UU. ISBN: 978-1-63485-831-1. pp. 119–155.Google Scholar
  11. Cho, S. Y., & Rhee, C. (2004). Mechanical properties and water vapor permeability of edible films made from fractionated soy proteins with ultrafiltration. LWT - Food Science and Technology, 37(8), 833–839.CrossRefGoogle Scholar
  12. Choi, W. S., Singh, S., & Lee, Y. S. (2016). Characterization of edible film containing essential oils in hydroxypropyl methylcellulose and its effect on quality attributes of ‘Formosa’ plum (Prunus salicina L.). LWT- Food Science and Technology, 70, 213–222.  https://doi.org/10.1016/j.lwt.2016.02.036.CrossRefGoogle Scholar
  13. de Aquino, A. B., Blank, A. F., & de Aquino Santana, L. C. L. (2015). Impact of edible chitosan–cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chemistry, 171, 108–116.CrossRefGoogle Scholar
  14. Dehghani, S., Hosseini, S. V., & Regenstein, J. M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240, 505–513.  https://doi.org/10.1016/j.foodchem.2017.07.034.CrossRefPubMedGoogle Scholar
  15. Dhanapal, A., Sasikala, P., Rajamani, L., Kavitha, V., Yazhini, G., & Shakila Banu, M. (2016). Edible films from polysaccharides. Food Science and Quality Management, 3, 9–18.Google Scholar
  16. Dong, F., & Wang, X. (2018). Guar gum and ginseng extract coatings maintain the quality of sweet cherry. LWT- Food Science and Technology, 89, 117–122.  https://doi.org/10.1016/j.lwt.2017.10.035.CrossRefGoogle Scholar
  17. Falco, I., Flores-Meraz, P. L., Randazzo, W., Sanchez, G., Lopez-Rubio, A., & Fabra, M. J. (2019). Antiviral activity of alginate-oleic acid based coatings incorporating green tea extract on strawberries and raspberries. Food Hydrocolloids, 87, 611–618.  https://doi.org/10.1016/j.foodhyd.2018.08.055.CrossRefGoogle Scholar
  18. Fan, X. J., Zhang, B., Yan, H., Feng, J. T., Ma, Z. Q., & Zhang, X. (2019). Effect of lotus leaf extract incorporated composite coating on the postharvest quality of fresh goji (Lycium barbarum L.) fruit. Postharvest Biology and Technology, 148, 132–140.  https://doi.org/10.1016/j.postharvbio.2018.10.020.CrossRefGoogle Scholar
  19. Garrido, T., Uranga, J., Guerrero, P., & de la Caba, K. (2018). The potential of vegetal and animal proteins to develop more sustainable food packaging. In T. J. Gutiérrez (Ed.), Polymers for food applications (pp. 25–59). Cham: Springer.  https://doi.org/10.1007/978-3-319-94625-2_3.CrossRefGoogle Scholar
  20. Gimenez, B., Gómez-Guillén, M. C., López-Caballero, M. E., Gómez Estaca, J., & Montero, P. (2012). Role of sepiolite in the release of active compounds from gelatin-egg white films. Food Hydrocolloids, 27(2), 475–486.  https://doi.org/10.1016/j.foodhyd.2011.09.003.CrossRefGoogle Scholar
  21. Guerra, I. C. D., Lima, P., Lima, P. D., Fernandez, M. M., Carneiro, A. S. S., Tavares, J. F., Barbosa, J. M., Madruga, M. S., & Leite, E. (2016). The effects of composite coatings containing chitosan and Mentha (piperita L. or x villosa Huds) essential oil on postharvest mold occurrence and quality of table grape cv. Isabella. Innovative Food Science & Emerging Technologies, 34, 112–121.  https://doi.org/10.1016/j.ifset.2016.01.008.CrossRefGoogle Scholar
  22. Guerreiro, A. C., Gago, C., Faleiro, M., Miguel, M., & Antines, M. (2015). Raspberry fresh fruit quality as affected by pectin-and alginate-based edible coatings enriched with essential oils. Scientia Horticulturae, 194, 138–146.  https://doi.org/10.1016/j.scienta.2015.08.004.CrossRefGoogle Scholar
  23. Guerreiro, A. C., Gago, C., Miguel, M., Faleiro, M., & Antines, M. (2016). The influence of edible coatings enriched with citral and eugenol on the raspberry storage ability, nutritional and sensory quality. Food Packaging and Shelf Life, 9, 20–28.  https://doi.org/10.1016/j.fpsl.2016.05.004.CrossRefGoogle Scholar
  24. Guerreiro, A. C., Gago, C. M. L., Faleiro, M. L., Miguel, M. G. C., & Antunes, M. D. C. (2017). The effect of edible coatings on the nutritional quality of ‘bravo de Esmolfe’ fresh-cut apple through shelf-life. LWT, 75, 210–219.CrossRefGoogle Scholar
  25. Gutiérrez, T. J. (2017a). Surface and nutraceutical properties of edible films made from starchy sources with and without added blackberry pulp. Carbohydrate Polymers, 165, 169–179.  https://doi.org/10.1016/j.carbpol.2017.02.016.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gutiérrez, T. J. (2017b). Chapter 8. Chitosan applications for the food industry. In S. Shakeel Ahmed & S. Ikram (Eds.), Chitosan: Derivatives, composites and applications (pp. 183–232). WILEY-Scrivener Publisher. EE.UU. ISBN: 978-1-119-36350-7.  https://doi.org/10.1002/9781119364849.ch8.CrossRefGoogle Scholar
  27. Gutiérrez, T. J. (2018a). Active and intelligent films made from starchy sources/blackberry pulp. Journal Polymers and the Environment, 26(6), 2374–2391.  https://doi.org/10.1007/s10924-017-1134-y.CrossRefGoogle Scholar
  28. Gutiérrez, T. J. (2018b). Biological macromolecule composite films made from sagu starch and flour/poly(ε-caprolactone) blends processed by blending/thermo molding. Journal Polymers and the Environment, 26(9), 3902–3912.  https://doi.org/10.1007/s10924-018-1268-6.CrossRefGoogle Scholar
  29. Gutiérrez, T. J. (2018c). Are modified pumpkin flour/plum flour nanocomposite films biodegradable and compostable? Food Hydrocolloids, 83, 397–410.  https://doi.org/10.1016/j.foodhyd.2018.05.035.CrossRefGoogle Scholar
  30. Gutiérrez, T. J. (2019). Chapter 19. Antibiofilm enzymes as an emerging technology for food quality and safety. In M. Kuddus (Ed.), Enzymes in food biotechnology: Production, applications, and future prospects (pp. 321–342). Editorial Academic Press. EE.UU. ISBN: 978-0-12813-280-7.  https://doi.org/10.1016/b978-0-12-813280-7.00019-0.CrossRefGoogle Scholar
  31. Gutiérrez, T. J., & Álvarez, K. (2016). Physico-chemical properties and in vitro digestibility of edible films made from plantain flour with added Aloe vera gel. Journal of Functional Foods, 26, 750–762.  https://doi.org/10.1016/j.jff.2016.08.054.CrossRefGoogle Scholar
  32. Gutiérrez, T. J., & Álvarez, K. (2017). Chapter 4. Transport phenomena in biodegradable and edible films. In M. A. Masuelli (Ed.), Biopackaging (pp. 58–88). Miami., EE.UU. ISBN: 978-1-4987-4968-8: Editorial CRC Press Taylor & Francis Group.Google Scholar
  33. Gutiérrez, T. J., & Alvarez, V. A. (2017a). Cellulosic materials as natural fillers in starch-containing matrix-based films: A review. Polymer Bulletin, 74(6), 2401–2430.  https://doi.org/10.1007/s00289-016-1814-0.CrossRefGoogle Scholar
  34. Gutiérrez, T. J., & Alvarez, V. A. (2017b). Films made by blending poly(ε-caprolactone) with starch and flour from sagu rhizome grown at the Venezuelan Amazons. Journal Polymers and the Environment, 25(3), 701–716.  https://doi.org/10.1007/s10924-016-0861-9.CrossRefGoogle Scholar
  35. Gutiérrez, T. J., & Alvarez, V. A. (2017c). Properties of native and oxidized corn starch/polystyrene blends under conditions of reactive extrusion using zinc octanoate as a catalyst. Reactive and Functional Polymers, 112, 33–44.  https://doi.org/10.1016/j.reactfunctpolym.2017.01.002.CrossRefGoogle Scholar
  36. Gutiérrez, T. J., & Alvarez, V. A. (2017d). Eco-friendly films prepared from plantain flour/PCL blends under reactive extrusion conditions using zirconium octanoate as a catalyst. Carbohydrate Polymers, 178, 260–269.  https://doi.org/10.1016/j.carbpol.2017.09.026.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gutiérrez, T. J., & Alvarez, V. A. (2017e). Data on physicochemical properties of active films derived from plantain flour/PCL blends developed under reactive extrusion conditions. Data in Brief, 15, 445–448.  https://doi.org/10.1016/j.dib.2017.09.071.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gutiérrez, T. J., Pérez, E., Guzmán, R., Tapia, M. S., & Famá, L. (2014). Physicochemical and functional properties of native and modified by crosslinking, dark-cush-cush yam (Dioscorea Trifida) and cassava (Manihot Esculenta) starch. Journal of Polymer and Biopolymer Physics Chemistry, 2(1), 1–5.  https://doi.org/10.12691/jpbpc-2-1-1.CrossRefGoogle Scholar
  39. Gutiérrez, T. J., Morales, N. J., Pérez, E., Tapia, M. S., & Famá, L. (2015a). Physico-chemical study of edible films based on native and phosphating cush-cush yam and cassava starches. Food Packaging and Shelf Life, 3, 1–8.  https://doi.org/10.1016/j.fpsl.2014.09.002.CrossRefGoogle Scholar
  40. Gutiérrez, T. J., Tapia, M. S., Pérez, E., & Famá, L. (2015b). Structural and mechanical properties of native and modified cush-cush yam and cassava starch edible films. Food Hydrocolloids, 45, 211–217.  https://doi.org/10.1016/j.foodhyd.2014.11.017.CrossRefGoogle Scholar
  41. Gutiérrez, T. J., Guzmán, R., Medina Jaramillo, C., & Famá, L. (2016a). Effect of beet flour on films made from biological macromolecules: native and modified plantain flour. International Journal of Biological Macromolecules, 82, 395–403.  https://doi.org/10.1016/j.ijbiomac.2015.10.020.CrossRefGoogle Scholar
  42. Gutiérrez, T. J., Suniaga, J., Monsalve, A., & García, N. L. (2016b). Influence of beet flour on the relationship surface-properties of edible and intelligent films made from native and modified plantain flour. Food Hydrocolloids, 54, 234–244.  https://doi.org/10.1016/j.foodhyd.2015.10.012.CrossRefGoogle Scholar
  43. Gutiérrez, T. J., González Seligra, P., Medina Jaramillo, C., Famá, L., & Goyanes, S. (2017). Chapter 14. Effect of filler properties on the antioxidant response of thermoplastic starch composites. In V. K. Thakur, M. K. Thakur, & M. R. Kessler (Eds.), Handbook of composites from renewable materials (pp. 337–370). WILEY-Scrivener Publisher. EE.UU. ISBN: 978-1-119-22362-7.  https://doi.org/10.1002/9781119441632.ch14.CrossRefGoogle Scholar
  44. Gutiérrez, T. J., Toro-Márquez, L. A., Merino, D., & Mendieta, J. R. (2019). Hydrogen-bonding interactions and compostability of bionanocomposite films prepared from corn starch and nano-fillers with and without added Jamaica flower extract. Food Hydrocolloids, 89, 283–293.  https://doi.org/10.1016/j.foodhyd.2018.10.058.CrossRefGoogle Scholar
  45. Hagenmaier, R. D. (2004). Fruit coatings containing ammonia instead of morpholine. Proceedings of the Florida State Horticultural Society, 117, 396–402.Google Scholar
  46. Hashemi, S. M. B., Khaneghah, A. M., Ghahfarrokhi, M. G., & Eş, I. (2017). Basil-seed gum containing Origanum vulgare subsp. viride essential oil as edible coating for fresh cut apricots. Postharvest Biology and Technology, 125, 26–34.  https://doi.org/10.1016/j.postharvbio.2016.11.003.CrossRefGoogle Scholar
  47. Herniou--Julien, C., Mendieta, J. R., & Gutiérrez, T. J. (2019). Characterization of biodegradable/non-compostable films made from cellulose acetate/corn starch blends processed under reactive extrusion conditions. Food Hydrocolloids, 89, 67–79.  https://doi.org/10.1016/j.foodhyd.2018.10.024.CrossRefGoogle Scholar
  48. Hosseini-Parvar, S. H., Matia-Merino, L., Goh, K. K. T., Razavi, S. M. A., & Mortazavi, S. A. (2010). Steady shear flow behavior of gum extracted from Ocimum basilicum L. seed: Effect of concentration and temperature. Journal of Food Engineering, 101(3), 236–243.  https://doi.org/10.1016/j.jfoodeng.2010.06.025.CrossRefGoogle Scholar
  49. Jafarizadeh, M., Osman, A., Tan, C. P., & Abdul, R. R. (2011). Development of an edible coating based on chitosan-glycerol to delay ‘Berangan’ Banana (Musa Sapientum cv. Berangan) ripening process. International Food Research Journal, 18(3), 989–997.Google Scholar
  50. Jovanovic, G. D., Klaus, A. S., & Niksić, M. P. (2016). Antimicrobial activity of chitosan coatings and films against Listeria monocytogenes on black radish. Revista Argentina de Microbiología, 48(2), 128–136.  https://doi.org/10.1016/j.ram.2016.02.003.CrossRefPubMedGoogle Scholar
  51. Kader, A. A. (2002). Quality parameters of fresh-cut fruit and vegetable products. In O. Lamikanra (Ed.), Fresh-cut fruits and vegetables. CRC Press.Google Scholar
  52. Karimi, N., & Kenari, R. E. (2016). Functionality of coatings with salep and basil seed gum for deep fried potato strips. Journal of the American Oil Chemists' Society, 93(2), 243–250.  https://doi.org/10.1007/s11746-015-2762-9.CrossRefGoogle Scholar
  53. Kharchoufi, S., Parafati, L., Licciardello, F., Muratore, G., Hamdi, M., Cirvilleri, G., & Restuccia, C. (2018). Edible coatings incorporating pomegranate peel extract and biocontrol yeast to reduce Penicillium digitatum postharvest decay of oranges. Food Microbiology, 74, 107–112.  https://doi.org/10.1016/j.fm.2018.03.011.CrossRefPubMedGoogle Scholar
  54. Kokoszka, S., Debeaufort, F., Hambleton, A., Lenart, A., & Voilley, A. (2010). Protein and glycerol contents affect physico-chemical properties of soy protein isolate-based edible films. Innovative Food Science and Emerging Technologies, 11(3), 503–510.  https://doi.org/10.1016/j.ifset.2010.01.006.CrossRefGoogle Scholar
  55. Lee, J. Y. (2003). Extending shelf life of minimally processed apples with edible coatings and antibrowning agents. LWT- Food Science and Technology, 6(3), 323–329.  https://doi.org/10.1016/S0023-6438(03)00014-8.CrossRefGoogle Scholar
  56. Lopes da Silva, J., & Rao, M. A. (2006). Pectins: Structure, functionality and uses. In A. Gennadios (Ed.), Food polysaccharides and their applications. Boca Raton: CRC Press.Google Scholar
  57. López-Córdoba, A. (2018). Antimicrobial films and coatings incorporated with food preservatives of microbial origin. In T. J. Gutiérrez (Ed.), Polymers for food applications (pp. 193–209). Cham: Springer.  https://doi.org/10.1007/978-3-319-94625-2_8.CrossRefGoogle Scholar
  58. Marquez, G. R., Di Pierro, P., Miriniello, L., Esposito, M., Giosafatto, C. V. L., & Porta, R. (2017). Fresh-cut fruit and vegetable coatings by transglutaminase-crosslinked whey protein/pectin edible films. LWT- Food Science and Technology, 75, 124–130.  https://doi.org/10.1016/j.lwt.2016.08.017.CrossRefGoogle Scholar
  59. McHugh, D.J. (2003). A guide to the seaweed industry. FAO fisheries technical paper, Rome.Google Scholar
  60. Merino, D., Mansilla, A. Y., Gutiérrez, T. J., Casalongué, C. A., & Alvarez, V. A. (2018). Chitosan coated-phosphorylated starch films: Water interaction, transparency and antibacterial properties. Reactive and Functional Polymers, 131, 445–453.  https://doi.org/10.1016/j.reactfunctpolym.2018.08.012.CrossRefGoogle Scholar
  61. Nair, M. S., Saxena, A., & Kaur, C. (2018a). Effect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava (Psidium guajava L.). Food Chemistry, 240, 245–252.  https://doi.org/10.1016/j.foodchem.2017.07.122.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Nair, M. S., Saxena, A., & Kaur, C. (2018b). Characterization and antifungal activity of pomegranate peel extract and its use in polysaccharide-based edible coatings to extend the shelf-life of capsicum (Capsicum annuum L.). Food and Bioprocess Technology, 11(7), 1317–1327.  https://doi.org/10.1007/s11947-018-2101-x.CrossRefGoogle Scholar
  63. Oh, Y. A., Oh, Y. J., Song, A. Y., Won, J. S., Song, K. B., & Min, S. C. (2017). Comparison of effectiveness of edible coatings using emulsions containing lemongrass oil of different size droplets on grape berry safety and preservation. LWT- Food Science and Technology, 75, 742–750.  https://doi.org/10.1016/j.lwt.2016.10.033.CrossRefGoogle Scholar
  64. Oms-Oliu, G., Soliva-Fortuny, R., & Martín-Belloso, O. (2008). Edible coatings with antibrowning agents to maintain sensory quality and antioxidant properties of fresh-cut pears. Postharvest Biology and Technology, 50(1), 87–94.  https://doi.org/10.1016/j.postharvbio.2008.03.005.CrossRefGoogle Scholar
  65. Palviainen, P., Heinamaki, J., Myllarinen, P., Lahtinen, R., Yliruusi, J., & Forssell, P. (2001). Corn starches as film formers in aqueous-based film coating. Pharmaceutical Development and Technology, 6(3), 351–359.  https://doi.org/10.1081/pdt-100002617.CrossRefGoogle Scholar
  66. Park, H. J. (1999). Development of advanced edible coatings for fruits. Trends in Food Science & Technology, 10(8), 254–260.CrossRefGoogle Scholar
  67. Park, S. K., et al. (2002). Formation and properties of soy protein films and coatings: Protein based films and coatings. Boca Raton: CRC press.Google Scholar
  68. Pavlath, A. E., & Orts, W. (2009). Edible films and coatings: Why, What, and How? In K. Huber & M. Embuscado (Eds.), Edible films and coatings for food applications. New York: Springer.  https://doi.org/10.1007/978-0-387-92824-1_1.CrossRefGoogle Scholar
  69. Ramos, Ó. L., Santos, A. C., Leão, M. V., Pereira, J. O., Silva, S. I., Fernandes, J. C., Franco, M. I., Pintado, M. E., & Malcata, F. X. (2012). Antimicrobial activity of edible coatings prepared from whey protein isolate and formulated with various antimicrobial agents. International Dairy Journal, 25(2), 132–141.CrossRefGoogle Scholar
  70. Ramos, Ó. L., Reinas, I., Silva, S. I., Fernandes, J. C., Cerqueira, M. A., Pereira, R. N., Vicente, A. A., Poças, M. F., Pintado, M. E., & Malcata, F. X. (2013). Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocolloids, 30(1), 110–122.CrossRefGoogle Scholar
  71. Riberio, C., Vicente, A. A., Teixeira, J. A., & Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 44(1), 63–70.  https://doi.org/10.1016/j.postharvbio.2006.11.015.CrossRefGoogle Scholar
  72. Ridley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: Structure, biosynthesis, and oilgogalacturonide-related signaling. Phytochemistry, 57(6), 929–967.  https://doi.org/10.1016/s0031-9422(01)00113-3.CrossRefPubMedGoogle Scholar
  73. Rodriguez, M., Osés, J., Ziani, K., & Maté, J. I. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Foodservice Research International, 39(8), 840–846.  https://doi.org/10.1016/j.foodres.2006.04.002.CrossRefGoogle Scholar
  74. Rojas-Grau, M. A., Raybaudi-Massilia, R. M., Solica-Fortuny, R., Avena-Bustillos, R. J., McHugh, T. H., & Belloso, O. M. (2007). Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest Biology and Technology, 45(2), 254–264.  https://doi.org/10.1016/j.postharvbio.2007.01.017.CrossRefGoogle Scholar
  75. Rojas-Grau, M. A., Tapia, M. S., & Martín-Belloso, O. (2008). Using polysaccharide-based edible coatings to maintain quality of fresh-cut Fuji apples. LWT- Food Science and Technology, 41(1), 139–147.  https://doi.org/10.1016/j.lwt.2007.01.009.CrossRefGoogle Scholar
  76. Saba, M. K., & Sogvar, O. B. (2016). Combination of carboxymethyl cellulose-based coatings with calcium and ascorbic acid impacts in browning and quality of fresh-cut apples. LWT- Food Science and Technology, 66, 165–171.  https://doi.org/10.1016/j.lwt.2015.10.022.CrossRefGoogle Scholar
  77. Sabaghi, M., Maghsoudlou, Y., Khomeiri, M., & Ziaiifar, A. M. (2015). Active edible coating from chitosan incorporating green tea extract as an antioxidant and antifungal on fresh walnut kernel. Postharvest Biology and Technology, 10, 224–228.  https://doi.org/10.1016/j.postharvbio.2015.08.025.CrossRefGoogle Scholar
  78. Saberi, B., & Golding, J. B. (2018). Postharvest application of biopolymer-based edible coatings to improve the quality of fresh horticultural produce. In T. J. Gutiérrez (Ed.), Polymers for food applications (pp. 211–250). Cham: Springer.  https://doi.org/10.1007/978-3-319-94625-2_9.CrossRefGoogle Scholar
  79. Saberi, B., Thakur, R., Vuong, Q. V., Chockchaisawasdee, S., Golding, J. B., Scarlet, C. J., & Stathopoulos, C. E. (2016). Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum. Industrial Crops and Products, 86, 342–352.  https://doi.org/10.1016/j.indcrop.2016.04.015.CrossRefGoogle Scholar
  80. Saini, C. S., Sharma, H. K., & Sharma, L. (2018). Thermal, structural and rheological characterization of protein isolate from sesame meal. Journal of Food Measurement and Characterization, 12(1), 426–432.  https://doi.org/10.1007/s11694-017-9655-6.CrossRefGoogle Scholar
  81. Salmieri, S., & Lacroix, M. (2006). Physiochemical properties of alginate/polycaprolactone-based films containing essential oils. Journal of Agricultural and Food Chemistry, 54(26), 0205–10214.  https://doi.org/10.1021/jf062127z.CrossRefGoogle Scholar
  82. Salvia-Trujillo, L., Rojas-Grau, M. A., Soliva-Fortuny, R., & Martín-Belloso, O. (2015). Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biology and Technology, 105, 8–16.  https://doi.org/10.1016/j.postharvbio.2015.03.009.CrossRefGoogle Scholar
  83. Sanchís, E., González, S., Chidelli, C., Sheth, C. C., Mateos, M., Palou, L., & Pérez-Gago, M. B. (2016). Browning inhibition and microbial control in fresh-cut persimmon (Diospyros kaki Thunb. cv. Rojo Brillante) by apple pectin-based edible coatings. Postharvest Biology and Technology, 112, 186–193.  https://doi.org/10.1016/j.postharvbio.2015.09.024.CrossRefGoogle Scholar
  84. Sandhu, K. S., Sharma, L., Singh, C., & Siroha, A. K. (2017). Recent advances in biodegradable films, coatings and their applications. In S. Gahlawat, R. Salar, P. Siwach, J. Duhan, S. Kumar, & P. Kaur (Eds.), Plant biotechnology: Recent advancements and developments (pp. 271–296). Singapore: Springer.  https://doi.org/10.1007/978-981-10-4732-9_14.CrossRefGoogle Scholar
  85. Santos, T. M., Souza Filho, M. d. S. M., Silva, E. d. O., da Silveira, M. R. S., de Miranda, M. R. A., Lopes, M. M. A., & Azeredo, H. M. C. (2018). Enhancing storage stability of guava with tannic acid-crosslinked zein coatings. Food Chemistry, 257, 252–258.CrossRefGoogle Scholar
  86. Sayanjali, S., Ghanbarzadeh, B., & Ghiassifar, S. (2011). Evaluation of antimicrobial and physical properties of edible film based on carboxymethyl cellulose containing potassium sorbate on some mycotoxigenic Aspergillus species in fresh pistachios. LWT- Food Science and Technology, 44(4), 1133–1138.  https://doi.org/10.1016/j.lwt.2010.12.017.CrossRefGoogle Scholar
  87. Shah, N. N., Vishwasrao, C., Singhal, R. S., & Nnrhanarayan, L. (2016). n-Octenyl succinylation of pullulan: Effect on its physico-mechanical and thermal properties and application as an edible coating on fruits. Food Hydrocolloids, 55, 178–188.  https://doi.org/10.1016/j.foodhyd.2015.11.026.CrossRefGoogle Scholar
  88. Sharma, S., & Rao, T. R. (2015). Xanthan gum based edible coating enriched with cinnamic acid prevents browning and extends the shelf-life of fresh-cut pears. LWT- Food Science and Technology, 62(1), 791–800.  https://doi.org/10.1016/j.lwt.2014.11.050.CrossRefGoogle Scholar
  89. Sharma, L., & Singh, C. (2016). Sesame protein based edible films: Development and characterization. Food Hydrocolloids, 61, 139–147.  https://doi.org/10.1016/j.foodhyd.2016.05.007.CrossRefGoogle Scholar
  90. Sharma, L., Singh Saini, C., & Sharma, H. K. (2018). Development of crosslinked sesame protein and pineapple extract-based bilayer coatings for shelf-life extension of fresh-cut pineapple. Journal of Food Processing and Preservation, 42(2), 1–11.  https://doi.org/10.1111/jfpp.13527.CrossRefGoogle Scholar
  91. Sharma, L., Saini, C. S., Sharma, H. K., & Sandhu, K. S. (2019). Biocomposite edible coatings based on cross linked-sesame protein and mango puree for the shelf life stability of fresh-cut mango fruit. Journal of Food Process Engineering, 42(1), e12938.  https://doi.org/10.1111/jfpe.12938.CrossRefGoogle Scholar
  92. Solvia-Fortuny, Rojas-Grau, M. A., & Martin-Belloso, O. (2012). Polysaccharide coatings. In E. A. Baldwin, R. D. Hagenmair, & J. Bai (Eds.), Edible coatings and films to improve food quality. Boca Raton: Taylor and Francis.Google Scholar
  93. Su, J. F., Huang, Z., Yuan, X. Y., Wang, X. Y., & Li, M. (2010). Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by maillard reactions. Carbohydrate Polymers, 79(1), 145–153.  https://doi.org/10.1016/j.carbpol.2009.07.035.CrossRefGoogle Scholar
  94. Suárez, G., & Gutiérrez, T. J. (2017). Chapter 15. Recent advances in the development of biodegadable films and foams from cassava starch. In C. Klein (Ed.), Handbook on cassava: Production, potential uses and recent advances (pp. 297–312). New York. EE.UU. ISBN: 978-1-53610-307-6: Editorial Nova Science Publishers, Inc.Google Scholar
  95. Sworn, G., & gum, X. (2009). In G. O. Phillips & P. A. Williams (Eds.), Handbook of hydrocolloids (2nd ed.). Boca Raton: CRC Press.Google Scholar
  96. Talens, P., Pérez-Masía, R., fabra, M. J., Vargas, M., & Chiralt, A. (2012). Application of edible coatings to partially dehydrated pineapple for use in fruit–cereal products. Journal of Food Engineering, 112(1-2), 86–93.  https://doi.org/10.1016/j.jfoodeng.2012.03.022.CrossRefGoogle Scholar
  97. Tapia, M. S., Rojas-Grau, M. A., Carmona, A., Rodríguez, F. J., Soliva-Fortuny, R., & Martin-Belloso, O. (2013). Use of alginate and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocolloids, 22(8), 1493–1503.  https://doi.org/10.1016/j.foodhyd.2007.10.004.CrossRefGoogle Scholar
  98. Tapia-Blácido, D. R., Maniglia, B. C., & Tosi, M. M. (2018). Transport phenomena in edible films. In T. J. Gutiérrez (Ed.), Polymers for food applications (pp. 149–192). Cham: Springer.  https://doi.org/10.1007/978-3-319-94625-2_7.CrossRefGoogle Scholar
  99. Tesfay, S. Z., Magwaza, L. S., Mbili, N., & Mditshwa, A. (2017). Carboxyl methylcellulose (CMC) containing moringa plant extracts as new postharvest organic edible coating for Avocado (Persea americana Mill.) fruit. Scientia Horticulturae, 226, 201–207.  https://doi.org/10.1016/j.scienta.2017.08.047.CrossRefGoogle Scholar
  100. Tihminlioglu, F., Atik, İ. D., & Özen, B. (2010). Water vapor and oxygen-barrier performance of corn–zein coated polypropylene films. Journal of Food Engineering, 96(3), 342–347.  https://doi.org/10.1016/j.jfoodeng.2009.08.018.CrossRefGoogle Scholar
  101. Vu, C. H. T., & Won, K. (2013). Novel water-resistant UV-activated oxygen indicator for intelligent food packaging. Food Chemistry, 140(1-2), 52–56.  https://doi.org/10.1016/j.foodchem.2013.02.056.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Zactiti, E. M., & Kieckbusch, T. G. (2006). Potassium sorbate permeability in biodegradable alginate films: Effect of the antimicrobial agent concentration and crosslinking degree. Journal of Food Engineering, 77(3), 462–467.  https://doi.org/10.1016/j.jfoodeng.2005.07.015.CrossRefGoogle Scholar
  103. Zambrano-Zaragoza, M. L., Quintanar-Guerrero, D., Del Real, A., Piñon-segundo, E., & Zambrano-zaragoza, J. F. (2017). The release kinetics of β-carotene nanocapsules/xanthan gum coating and quality changes in fresh-cut melon (cantaloupe). Carbohydrate Polymers, 157, 1874–1882.  https://doi.org/10.1016/j.carbpol.2016.11.075.CrossRefPubMedGoogle Scholar
  104. Zhang, L., Li, S., Dong, Y., Zhi, H., & Zong, W. (2016). Tea polyphenols incorporated into alginate-based edible coating for quality maintenance of Chinese winter jujube under ambient temperature. LWT- Food Science and Technology, 70, 155–161.  https://doi.org/10.1016/j.lwt.2016.02.046.CrossRefGoogle Scholar
  105. Zhang, L., Chen, F., Lai, S., Wang, H., & Yang, H. (2018). Impact of soybean protein isolate-chitosan edible coating on the softening of apricot fruit during storage. LWT- Food Science and Technology, 96, 604–611.  https://doi.org/10.1016/j.lwt.2018.06.011.CrossRefGoogle Scholar
  106. Zobel, H. F., & Stephen, A. M. (2006). Starch: structure, analysis and application. In A. Gennadios (Ed.), Food polysaccharides and their applications. Boca Raton: Taylor and Francis.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Loveleen Sharma
    • 1
  • Alok Saxena
    • 1
  • Tanushree Maity
    • 2
  1. 1.Amity Institute of Food TechnologyAmity University Uttar PradeshNoidaIndia
  2. 2.Defence Research and Development Organization, DRDO BhawanNew DelhiIndia

Personalised recommendations