How to Build a 3D Model of a Fossil Hominin Vertebral Spine Based on Osseous Material

  • Ella Been
  • Tatiana Waintraub
  • Asier Gómez-Olivencia
  • Leonid Kalichman
  • Patricia Ann Kramer
  • Sara Shefi
  • Michalle Soudack
  • Alon Barash


Reconstruction of the spinal curvatures of extinct hominins is essential in order to understand their posture and function. Despite its importance, researchers face many difficulties in reconstructing spinal posture based solely on osseous material due to the absence of soft tissues.

In this chapter, we explain how to align two consecutive vertebrae in the absence of the intervertebral discs. Then we summarize and demonstrate the use of the current methods for estimating sacral orientation and spinal curvatures from osseous material. We also discuss the advantages and disadvantages of each method. As an example, we demonstrate the application of these methods to the vertebral column of the Kebara 2 adult male Neandertal and present the 3D reconstruction of its spinal curvatures from the sacrum to the cervical spine.

Two methods—pelvic incidence (PI) and sacral anatomical angle (SAA)—are used to describe sacral orientation. Both methods are applicable when the pelvis is relatively complete. Three methods—lumbar vertebral body wedging (LVBW), inferior articular process angle (IAPA), and lumbar lordosis based on PI (LLPI)—are used to define lumbar lordosis. Two methods—thoracic vertebral body wedging (TVBW) and thoracic vertebral body height difference (TVBHD)—are used to estimate thoracic kyphosis. Finally, foramen magnum orientation (FMO) is used to reconstruct the cervical lordosis.

The calculated values for Kebara 2 are PI: 34°, SAA: 19°, IAPA: 25°, LLPI: 29°–36°, TVBHD: 44°, TVBW: 37°, FMO: 26°. Based on these calculations, we present here a complete reconstruction of the spine of Kebara 2 from the atlas to the sacrum. This is the first reconstruction of a complete vertebral spine that has been performed for a fossil hominin. Given anatomical variation, utilizing a combination of the methods is advised. The different methods are consistent with each other in each anatomical region and their combined use provides a more robust estimate.


Posture Lumbar Thoracic Cervical spine Intervertebral disc Computerized tomography 



We thank M. Haeusler and M. Bastir for their useful comments in a previous version of this paper. AGO receives support from the Spanish Ministerio de Ciencia y Tecnología (Project: CGL-2015-65387-C3-2-P, MINECO/FEDER), by the Spanish Ministerio deCiencia, Innovación y Universidades (project PGC2018-093925-BC33) and from the Research Group IT1418-19 from the Eusko Jaurlaritza-Gobierno Vasco.


  1. Arensburg B (1991) The vertebral column, thoracic cage and hyoid bone. In: Bar-Yosef O, Vandermeersch B (eds) Le squelette moustérien de Kébara 2. Éditions du CNRS, Paris, pp 113–147Google Scholar
  2. Bailey J, Been E, Kramer P (2014) Higher lumbar lordosis among women: a study examining lumbar angle and dorsoventral wedging of vertebral bodies and discs in standing and supine radiographs. FASEB J 28:1Google Scholar
  3. Barrey C, Jund J, Noseda O, Roussouly P (2007) Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur Spine J 16(9):1459–1467PubMedPubMedCentralGoogle Scholar
  4. Bastir M, García-Martínez D, Torres-Tamayo N, Sanchis-Gimeno JA, O’Higgins P, Utrilla C, Torres Sánchez I, García Río F (2017) In vivo 3D analysis of thoracic kinematics: changes in size and shape during breathing and their implications for respiratory function in recent humans and fossil hominins. Anat Rec 300(2):255–264Google Scholar
  5. Bastir M, Torres-Tamayo N, Palancar CA, Zlolniski SL, García-Martínez D, Riesco-López A, Vidal D, Blanco-Pérez E, Barash A, Nalla S, Martelli S, Sanchis-Gimeno JA, Schlager S (2019) Geometric morphometric studies in the human spine. In: Been E, Gómez-Olivencia A, Kramer PA (eds) Spinal evolution: morphology, function, and pathology of the spine in hominoid evolution. Springer, New York, pp 360–386Google Scholar
  6. Been E, Bailey JF (2019) The association between spinal posture and spinal biomechanics in modern humans: implications for extinct hominins. In: Been E, Gómez-Olivencia A, Kramer PA (eds) Spinal evolution: morphology, function, and pathology of the spine in hominoid evolution. Springer, New York, pp 283–300Google Scholar
  7. Been E, Barash A, Marom A, Kramer PA (2010a) Vertebral bodies or discs: which contributes more to human-like lumbar lordosis? Clin Orthop Relat Res 468(7):1822–1829Google Scholar
  8. Been E, Barash A, Pessah H, Peleg S (2010b) A new look at the geometry of the lumbar spine. Spine 35(20):E1014–E1017PubMedGoogle Scholar
  9. Been E, Gó mez-Olivencia A, Kramer PA (2012) Lumbar lordosis of extinct hominins. Am J Phys Anthropol 147(1):64–77PubMedPubMedCentralGoogle Scholar
  10. Been E, Gómez-Olivencia A, Kramer PA (2014a) Brief communication: lumbar lordosis in extinct hominins: implications of the pelvic incidence. Am J Phys Anthropol 154(2):307–314PubMedPubMedCentralGoogle Scholar
  11. Been E, Shefi S, Soudack M, Zilka LR, Barash A, Rak Y (2014b) Cervical lordosis and the orientation of the foramen magnum, implications to human evolution. Am J Phys Anthropol 153:75Google Scholar
  12. Been E, Gómez-Olivencia A, Kramer P, Barash A (2017a) 3D reconstruction of spinal posture of the Kebara 2 Neanderthal. In: Marom A, Hovers E (eds) Human paleontology and prehistory contributions in honor of Yoel Rak. Springer, Cham, pp 239–251Google Scholar
  13. Been E, Gómez-Olivencia A, Shefi S, Soudack M, Bastir M, Barash A (2017b) Evolution of spinopelvic alignment in hominins. Anat Rec 300(5):900–911Google Scholar
  14. Been E, Shefi S, Soudack M (2017c) Cervical lordosis: the effect of age and gender. Spine J 17(6):880–888PubMedGoogle Scholar
  15. Been E, Kalichman L (2014) Lumbar lordosis. Spine J 14(1):87–97PubMedPubMedCentralGoogle Scholar
  16. Been E, Pessah H, Been L, Tawil A, Peleg S (2007) New method for predicting the lumbar lordosis angle in skeletal material. Anat Rec (Hoboken) 290(12):1568–1573Google Scholar
  17. Been E, Pessah H, Peleg S, Kramer PA (2013) Sacral orientation in hominin evolution. Adv Anthropol 03(03):133–141Google Scholar
  18. Been E, Simonovich A, Kalichman L (2019) Spinal posture and pathology in modern humans. In: Been E, Gómez-Olivencia A, Kramer PA (eds) Spinal evolution: morphology, function, and pathology of the spine in hominoid evolution. Springer, New York, pp 301–320Google Scholar
  19. Bonmatí A, Gómez-Olivencia A, Arsuaga JL, Carretero JM, Gracia A, Martínez I, Lorenzo C, Bermúdez de Castro JM, Carbonell E (2010) Middle Pleistocene lower back and pelvis from an aged human individual from the Sima de los Huesos site, Spain. Proc Natl Acad Sci U S A 107(43):18386–18391PubMedPubMedCentralGoogle Scholar
  20. Boulay C, Tardieu C, Hecquet J, Benaim C, Mouilleseaux B, Marty C, Prat-Pradal D, Legaye J, Duval-Beaupère G, Pelissier J (2006) Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J 15(4):415–422Google Scholar
  21. Carretero JM, Rodríguez L, Garcia-Gonzalez R, Arsuaga JL, Gómez-Olivencia A, Lorenzo C, Bonmatí A, Gracia A, Martínez I, Quam R (2012) Stature estimation from complete long bones in the middle Pleistocene humans from the Sima de los Huesos, sierra de Atapuerca (Spain). J Hum Evol 62(2):242–255PubMedGoogle Scholar
  22. Castillo ER, Lieberman DE (2017) Lordosis variability and shock attenuation in the hominin lumbar spine. Am J Phys Anthropol 162:139–140Google Scholar
  23. Chevillotte T, Coudert P, Cawley D, Bouloussa H, Mazas S, Boissière L, Gille O (2018) Influence of posture on relationships between pelvic parameters and lumbar lordosis: comparison of the standing, seated, and supine positions. A preliminary study. Orthop Traumatol Surg Res 104(5):565–568PubMedGoogle Scholar
  24. Cleuvenot E (1999) Courbures sagittales de la colonne vertébrale déterminées par la morphologie des vertèbres. Développement d’une nouvelle méthodologie et application chez Homo sapiens. PhD thesis. Université Bordeaux IGoogle Scholar
  25. Damasceno LHF, Catarin SRG, Campos AD, Defino HLA (2006) Lumbar lordosis: a study of angle values and of vertebral bodies and intervertebral discs role. Acta Ortopédica Brasileira 14(4):193–198Google Scholar
  26. Duval-Beaupère G, Schmidt C, Cosson PH (1992) A Barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20(4):451–462Google Scholar
  27. Goh S, Price RI, Leedman PJ, Singer KP (1999) The relative influence of vertebral body and intervertebral disc shape on thoracic kyphosis. Clin Biomech (Bristol, Avon) 14(7):439–448Google Scholar
  28. Gómez-Olivencia A, Arlegi M, Barash A, Stock JT, Been E (2017) The Neandertal vertebral column 2: the lumbar spine. J Hum Evol 106:84–101Google Scholar
  29. Gómez-Olivencia A, Barash A, García-Martínez D, Arlegi M, Kramer P, Bastir M, Been E (2018) 3D virtual reconstruction of the Kebara 2 Neandertal thorax. Nat Commun 9(1):4387Google Scholar
  30. Gómez-Olivencia A, Eaves-Johnson KL, Franciscus RG, Carretero JM, Arsuaga JL (2009) Kebara 2: new insights regarding the most complete Neandertal thorax. J Hum Evol 57(1):75–90PubMedGoogle Scholar
  31. Haeusler M, Martelli SA, Boeni T (2002) Vertebrae numbers of the early hominid lumbar spine. J Hum Evol 43(5):621–643Google Scholar
  32. Hardacker JW, Shuford RF, Capicotto PN, Pryor PW (1997) Radiographic standing cervical segmental alignment in adult volunteers without neck symptoms. Spine (Philadelphia PA 1976) 22(13):1472–1480Google Scholar
  33. Kimura S, Steinbach GC, Watenpaugh DE, Hargens AR (2001) Lumbar spine disc height and curvature responses to an axial load generated by a compression device compatible with magnetic resonance imaging. Spine 26(23):2596–2600Google Scholar
  34. Korovessis PG, Stamatakis MV, Baikousis AG (1998) Reciprocal angulation of vertebral bodies in the sagittal plane in an asymptomatic Greek population. Spine 23(6):700–704Google Scholar
  35. Kunkel ME, Herkommer A, Reinehr M, Bockers TM, Wilke HJ (2011) Morphometric analysis of the relationships between intervertebral disc and vertebral body heights: an anatomical and radiographic study of the human thoracic spine. J Anat 219(3):375–387PubMedPubMedCentralGoogle Scholar
  36. Le Huec JC, Hasegawa K (2016) Normative values for the spine shape parameters using 3D standing analysis from a database of 268 asymptomatic Caucasian and Japanese subjects. Eur Spine J 25(11):3630–3637PubMedGoogle Scholar
  37. Legaye J, Duval-Beaupère G (2008) Gravitational forces and sagittal shape of the spine. Int Orthop 32(6):809–816PubMedPubMedCentralGoogle Scholar
  38. Legaye J, Duval-Beaupère G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7(2):99–103PubMedPubMedCentralGoogle Scholar
  39. Legaye J, Duval-Beaupère G, Tardieu C, Hecquet J (2007) The conditions required for an economic standing position in humans: key role of the pelvic parameter: the sacral incidence angle. Growth, evolution and plasticity of this parameter. J Morphol 268(12):1099–1099Google Scholar
  40. Mac-Thiong JM, Roussouly P, Berthonnaud E, Guigui P (2010) Sagittal parameters of global spinal balance: normative values from a prospective cohort of seven hundred nine Caucasian asymptomatic adults. Spine 35(22):E1193–E1198PubMedGoogle Scholar
  41. Peleg S, Dar G, Steinberg N, Peled N, Hershkovitz I, Masharawi Y (2007) Sacral orientation revisited. Spine 32(15):E397–E404PubMedGoogle Scholar
  42. Pilbeam D (2004) The anthropoid postcranial axial skeleton: comments on development, variation, and evolution. J Exp Zool B Mol Dev Evol 302b(3):241–267Google Scholar
  43. Sanders WJ (1998) Comparative morphometric study of the australopithecine vertebral series Stw-H8/H41. J Hum Evol 34(3):249–302Google Scholar
  44. Sawyer GJ, Maley B (2005) Neanderthal reconstructed. Anat Rec 283(1):23–31Google Scholar
  45. Schwab F, Lafage V, Boyce R, Skalli W, Farcy JP (2006) Gravity line analysis in adult volunteers – age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine 31(25):E959–E967Google Scholar
  46. Simon P, Orias AAE, Andersson GBJ, An HS, Inoue N (2012) In vivo topographic analysis of lumbar facet joint space width distribution in healthy and symptomatic subjects. Spine 37(12):1058–1064PubMedPubMedCentralGoogle Scholar
  47. Trinkaus E (1985) Pathology and the posture of the La-Chapelle-aux-saints Neandertal. Am J Phys Anthropol 67(1):19–41Google Scholar
  48. Vialle R, Levassor N, Rillardon L, Templier A, Skalli W, Guigui P (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87(2):260–267PubMedGoogle Scholar
  49. Williams SA, Gómez-Olivencia A, Pilbeam DR (2019) Numbers of vertebrae in hominoid evolution. In: Been E, Gómez-Olivencia A, Kramer PA (eds) Spinal evolution: morphology, function, and pathology of the spine in hominoid evolution. Springer, New York, pp 97–124Google Scholar
  50. Williams SA, Middleton ER, Villamil CI, Shattuck MR (2016) Vertebral numbers and human evolution. Am J Phys Anthropol 159(Suppl 61):S19–S36Google Scholar
  51. Williams SA, Ostrofsky KR, Frater N, Churchill SE, Schmid P, Berger LR (2013) The vertebral column of Australopithecus sediba. Science 340(6129):1232996Google Scholar
  52. Yang X, Kong Q, Song Y, Liu L, Zeng J, Xing R (2013) The characteristics of spinopelvic sagittal alignment in patients with lumbar disc degenerative diseases. Eur Spine J 23(3):569–575PubMedPubMedCentralGoogle Scholar
  53. Zhang F, Zhang K, Tian HJ, Wu AM, Cheng XF, Zhou TJ, Zhao J (2018) Correlation between lumbar intervertebral disc height and lumbar spine sagittal alignment among asymptomatic Asian young adults. J Orthop Surg Res 13(1):34PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ella Been
    • 1
    • 2
  • Tatiana Waintraub
    • 2
  • Asier Gómez-Olivencia
    • 3
    • 4
    • 5
  • Leonid Kalichman
    • 6
  • Patricia Ann Kramer
    • 7
  • Sara Shefi
    • 1
  • Michalle Soudack
    • 8
    • 9
  • Alon Barash
    • 10
  1. 1.Department of Sports Therapy, Faculty of Health ProfessionsOno Academic CollegeKiryat OnoIsrael
  2. 2.Department of Anatomy and Anthropology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y TecnologíaUniversidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU)LeioaSpain
  4. 4.IKERBASQUE. Basque Foundation for ScienceBilbaoSpain
  5. 5.Centro Mixto UCM-ISCIII de Evolución y Comportamiento HumanosMadridSpain
  6. 6.Department of Physical Therapy, Recanati School for Community Health ProfessionsFaculty of Health Sciences at the Ben-Gurion University of the NegevBeer-ShevaIsrael
  7. 7.Departments of Anthropology and Orthopaedics and Sports MedicineUniversity of WashingtonSeattleUSA
  8. 8.Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
  9. 9.Department of Diagnostic ImagingSheba Medical CenterTel HashomerIsrael
  10. 10.The Azrieli Faculty of MedicineBar Ilan UniversitySafedIsrael

Personalised recommendations