Advertisement

The Association Between Spinal Posture and Spinal Biomechanics in Modern Humans: Implications for Extinct Hominins

  • Ella Been
  • Jeannie F. Bailey
Chapter

Abstract

The vertebral column is the fundamental body part that determines locomotion and function in vertebrates. Understanding spinal posture, kinetics and kinematics is of great importance to the study of the paleobiology of extinct species. When discussing the biomechanics of the spine of extinct hominins, arguments are based solely on osseous material, as soft tissues are basically absent from the fossil record and because there is no living representative of these species to track and measure movement and function. In this article, we tried to determine the interactions between spinal posture and biomechanics within modern humans and translate the results to extinct hominins. Our main findings indicate that each group/lineage of hominins had special biomechanical characteristics. Early Homo sapiens and Homo erectus with moderate to high spinal curvatures, similar to the posture of modern humans, probably had similar spinal biomechanical characteristics as modern humans. Neanderthal lineage hominins (NLH) with small spinal curvatures might have had somewhat different biomechanics characterized by more stable spine, with reduced shock attenuation abilities compared to modern humans. NLH probably also preferred to squat rather than stoop and had better overhead throwing kinematics compared to modern humans. Australopithecus probably had lumbar biomechanical characteristics within the range of modern humans together with stable cervical spine and a small cervical range of motion (ROM).

Keywords

Stability Range of motion Muscle force Kinematics Shock attenuation Function 

References

  1. Adams M, Hutton W (1982) Prolapsed intervertebral disc: a hyperflexion injury. Spine 7(3):184–191PubMedCrossRefPubMedCentralGoogle Scholar
  2. Adams M, Hutton W (1985) The effect of posture on the lumbar spine. J Bone Joint Surg 67(4):625–629CrossRefGoogle Scholar
  3. Addison BJ, Lieberman DE (2015) Tradeoffs between impact loading rate, vertical impulse and effective mass for walkers and heel strike runners wearing footwear of varying stiffness. J Biomech 48(7):1318–1324PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alpayci M, Şenköy E, Delen V, Şah V, Yazmalar L, Erden M, Toprak M, Kaplan Ş (2016) Decreased neck muscle strength in patients with the loss of cervical lordosis. Clin Biomech 33:98–102CrossRefGoogle Scholar
  5. Arlegi M, Gómez-Olivencia A, Albessard L, Martínez I, Balzeau A, Arsuaga JL, Been E (2017) The role of allometry and posture in the evolution of the hominin subaxial cervical spine. J Hum Evol 104:80–99PubMedCrossRefPubMedCentralGoogle Scholar
  6. Assi A, Bakouny Z, Massaad A, Lafage V, Saghbini E, Kreichati G, Skalli W, Ghanem I (2016) How the type of sagittal alignment defined by Roussouly determines the gait of the asymptomatic adult subject. Revue de Chirurgie Orthopédique et Traumatologique 102(7):S179–S180CrossRefGoogle Scholar
  7. Bailey JF (2016) The effects of postural loading, sacral orientation, and age on sex differences in lumbar functional morphology and health. University of Washington, Seattle, WAGoogle Scholar
  8. Bailey JF, Miller SL, Khieu K, O’Neill CW, Healey RM, Coughlin DG, Sayson JV, Chang DG, Hargens AR, Lotz JC (2018) From the international space station to the clinic: how prolonged unloading may disrupt lumbar spine stability. Spine J 18(1):7–14PubMedCrossRefGoogle Scholar
  9. Bakouny Z, Assi A, Massaad A, Saghbini E, Lafage V, Kreichati G, Skalli W, Ghanem I (2016) Roussouly’s sagittal spino-pelvic morphotypes as determinants of gait in asymptomatic adult subjects. Gait Posture 49:57CrossRefGoogle Scholar
  10. Bakouny Z, Assi A, Massaad A, Saghbini E, Lafage V, Skalli W, Ghanem I, Kreichati G (2017) Roussouly’s sagittal spino-pelvic morphotypes as determinants of gait in asymptomatic adult subjects. Gait Posture 54:27–33PubMedCrossRefPubMedCentralGoogle Scholar
  11. Been E, Gómez-Olivencia A, Kramer PA (2012) Lumbar lordosis of extinct hominins. Am J Phys Anthropol 147(1):64–77PubMedCrossRefPubMedCentralGoogle Scholar
  12. Been E, Gómez-Olivencia A, Kramer PA (2014) Brief communication: lumbar lordosis in extinct hominins: implications of the pelvic incidence. Am J Phys Anthropol 154(2):307–314PubMedCrossRefPubMedCentralGoogle Scholar
  13. Been E, Gómez-Olivencia A, Shefi S, Soudack M, Bastir M, Barash A (2017) Evolution of spinopelvic alignment in hominins. Anat Rec 300(5):900–911CrossRefGoogle Scholar
  14. Been E, Kalichman L (2014) Lumbar lordosis. Spine J 14(1):87–97PubMedCrossRefPubMedCentralGoogle Scholar
  15. Been E, Peleg S, Marom A, Barash A (2010) Morphology and function of the lumbar spine of the Kebara 2 Neandertal. Am J Phys Anthropol 142(4):549–557PubMedCrossRefPubMedCentralGoogle Scholar
  16. Borstad JD, Ludewig PM (2005) The effect of long versus short pectoralis minor resting length on scapular kinematics in healthy individuals. J Orthop Sports Phys Ther 35(4):227–238PubMedCrossRefPubMedCentralGoogle Scholar
  17. Briggs AM, Van Dieën JH, Wrigley TV, Greig AM, Phillips B, Lo SK, Bennell KL (2007) Thoracic kyphosis affects spinal loads and trunk muscle force. Phys Ther 87(5):595–607PubMedCrossRefPubMedCentralGoogle Scholar
  18. Carretero JM, Lorenzo C, Arsuaga JL (1999) Axial and appendicular skeleton of Homo antecessor. J Hum Evol 37(3–4):459–499PubMedCrossRefPubMedCentralGoogle Scholar
  19. Castillo ER, Hsu C, Mair RW, Lieberman DE (2017) Testing biomechanical models of human lumbar lordosis variability. Am J Phys Anthropol 163(1):110–121PubMedCrossRefPubMedCentralGoogle Scholar
  20. Castillo ER, Lieberman DE (2018) Shock attenuation in the human lumbar spine during walking and running. J Exp Biol 221:jeb177949PubMedCrossRefPubMedCentralGoogle Scholar
  21. Charles RH (1894) Morphological peculiarities in the Panjabi, and their bearing on the question of the transmission of acquired characters. J Anat Physiol 28(Pt 3):271PubMedPubMedCentralGoogle Scholar
  22. Cho M, Lee Y, Kim CS, Gong W (2011) Correlations among sacral angle, lumbar lordosis, lumbar ROM, static and dynamic lumbar stability in college students. J Phys Ther Sci 23(5):793–795CrossRefGoogle Scholar
  23. Cook DC, Buikstra JE, DeRousseau CJ, Johanson DC (1983) Vertebral pathology in the Afar australopithecines. Am J Phys Anthropol 60(1):83–101PubMedCrossRefPubMedCentralGoogle Scholar
  24. Crawford HJ, Jull GA (1993) The influence of thoracic posture and movement on range of arm elevation. Physiother Theory Pract 9(3):143–148CrossRefGoogle Scholar
  25. Crisco J, Panjabi M, Yamamoto I, Oxland T (1992) Euler stability of the human ligamentous lumbar spine. Part II: experiment. Clin Biomech 7(1):27–32CrossRefGoogle Scholar
  26. Davis IS, Bowser BJ, Mullineaux DR (2016) Greater vertical impact loading in female runners with medically diagnosed injuries: a prospective investigation. Br J Sports Med 50(14):887–892PubMedCrossRefPubMedCentralGoogle Scholar
  27. Derrick TR, Hamill J, Caldwell GE (1998) Energy absorption of impacts during running at various stride lengths. Med Sci Sports Exerc 30(1):128–135PubMedCrossRefPubMedCentralGoogle Scholar
  28. du Rose A, Breen A (2016) Relationships between lumbar inter-vertebral motion and lordosis in healthy adult males: a cross sectional cohort study. BMC Musculoskelet Disord 17(1):121PubMedPubMedCentralCrossRefGoogle Scholar
  29. Finley MA, Lee RY (2003) Effect of sitting posture on 3-dimensional scapular kinematics measured by skin-mounted electromagnetic tracking sensors. Arch Phys Med Rehabil 84(4):563–568PubMedCrossRefPubMedCentralGoogle Scholar
  30. Fox M (2013) Neandertal lumbopelvic anatomy and the biomechanical effects of a reduced lumbar lordosis. University of Cincinnati, Cincinnati, OHGoogle Scholar
  31. Giandolini M, Horvais N, Rossi J, Millet GY, Samozino P, Morin JB (2016) Foot strike pattern differently affects the axial and transverse components of shock acceleration and attenuation in downhill trail running. J Biomech 49(9):1765–1771PubMedCrossRefGoogle Scholar
  32. Gómez-Olivencia A, Arlegi M, Barash A, Stock JT, Been E (2017) The Neandertal vertebral column 2: the lumbar spine. J Hum Evol 106:84–101PubMedCrossRefGoogle Scholar
  33. Gong W (2015) The effects of cervical joint manipulation, based on passive motion analysis, on cervical lordosis, forward head posture, and cervical ROM in university students with abnormal posture of the cervical spine. J Phys Ther Sci 27(5):1609–1611PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gong W, Kim C, Lee Y (2012) Correlations between cervical lordosis, forward head posture, cervical ROM and the strength and endurance of the deep neck flexor muscles in college students. J Phys Ther Sci 24(3):275–277CrossRefGoogle Scholar
  35. Granito RN, Aveiro MC, Renno ACM, Oishi J, Driusso P (2012) Comparison of thoracic kyphosis degree, trunk muscle strength and joint position sense among healthy and osteoporotic elderly women: a cross-sectional preliminary study. Arch Gerontol Geriatr 54(2):e199–e202PubMedCrossRefGoogle Scholar
  36. Grasso R, Zago M, Lacquaniti F (2000) Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture. J Neurophysiol 83(1):288–300PubMedCrossRefGoogle Scholar
  37. Haeusler M, Schiess R, Boeni T (2011) New vertebral and rib material point to modern bauplan of the Nariokotome Homo erectus skeleton. J Hum Evol 61(5):575–582PubMedCrossRefGoogle Scholar
  38. Heino JG, Godges JJ, Carter CL (1990) Relationship between hip extension range of motion and postural alignment. J Orthop Sports Phys Ther 12(6):243–247PubMedCrossRefGoogle Scholar
  39. Hirose D, Ishida K, Nagano Y, Takahashi T, Yamamoto H (2004) Posture of the trunk in the sagittal plane is associated with gait in community-dwelling elderly population. Clin Biomech 19(1):57–63CrossRefGoogle Scholar
  40. Hongo M, Miyakoshi N, Shimada Y, Sinaki M (2012) Association of spinal curve deformity and back extensor strength in elderly women with osteoporosis in Japan and the United States. Osteoporos Int 23(3):1029–1034PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hsu C, Castillo E, Lieberman D (2015) The relationship between trunk muscle strength and flexibility, intervertebral disc wedging, and human lumbar lordosis. The Harvard Undergraduate Research Journal 8:35–41Google Scholar
  42. Hutton W, Dhanendran M (1979) A study of the distribution of load under the normal foot during walking. Int Orthop 3(2):153–157PubMedPubMedCentralGoogle Scholar
  43. Izzo R, Guarnieri G, Guglielmi G, Muto M (2013) Biomechanics of the spine. Part I: spinal stability. Eur J Radiol 82(1):118–126PubMedCrossRefPubMedCentralGoogle Scholar
  44. Jang SY, Kong MH, Hymanson HJ, Jin TK, Song KY, Wang JC (2009) Radiographic parameters of segmental instability in lumbar spine using kinetic MRI. J Korean Neurosurg Soc 45(1):24–31PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kapandji IA (1974) The physiology of the joints. Churchill Livingstone, Edinburg ScotlandGoogle Scholar
  46. Kebaetse M, McClure P, Pratt NA (1999) Thoracic position effect on shoulder range of motion, strength, and three-dimensional scapular kinematics. Arch Phys Med Rehabil 80(8):945–950PubMedCrossRefPubMedCentralGoogle Scholar
  47. Kendall FP, McCreary EK, Provance PG, Rodgers M, Romani WA (2005) Muscles: testing and function, with posture and pain. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  48. Kim HJ, Chung S, Kim S, Shin H, Lee J, Kim S, Song MY (2006) Influences of trunk muscles on lumbar lordosis and sacral angle. Eur Spine J 15(4):409–414PubMedCrossRefGoogle Scholar
  49. Kirkaldy-Willis W (1985) Presidential symposium on instability of the lumbar spine: introduction. Spine 10(3):254CrossRefGoogle Scholar
  50. Kobayashi T, Takeda N, Atsuta Y, Matsuno T (2008) Flattening of sagittal spinal curvature as a predictor of vertebral fracture. Osteoporos Int 19(1):65–69PubMedCrossRefPubMedCentralGoogle Scholar
  51. Lewis JS, Green A, Wright C (2005) Subacromial impingement syndrome: the role of posture and muscle imbalance. J Shoulder Elb Surg 14(4):385–392CrossRefGoogle Scholar
  52. Mayoux-Benhamou M, Revel M, Vallee C, Roudier R, Barbet J, Bargy F (1994) Longus colli has a postural function on cervical curvature. Surg Radiol Anat 16(4):367–371PubMedCrossRefPubMedCentralGoogle Scholar
  53. McCowan T, Keith A (1939) The stone age of Mount Carmel. Oxford University Press, OxfordGoogle Scholar
  54. Meakin JR, Fulford J, Seymour R, Welsman JR, Knapp KM (2013) The relationship between sagittal curvature and extensor muscle volume in the lumbar spine. J Anat 222(6):608–614PubMedPubMedCentralCrossRefGoogle Scholar
  55. Meyer MR (2005) Functional biology of the Homo erectus axial skeleton from Dmanisi, Georgia. University of Pennsylvania, Philadelphia, PAGoogle Scholar
  56. Meyer MR (2016) The cervical vertebrae of KSD-VP-1/1. The postcranial anatomy of Australopithecus afarensis. Springer, New York, pp 63–111CrossRefGoogle Scholar
  57. Meyer MR, Williams SA, Smith MP, Sawyer GJ (2015) Lucy’s back: reassessment of fossils associated with the AL 288-1 vertebral column. J Hum Evol 85:174–180PubMedCrossRefPubMedCentralGoogle Scholar
  58. Mika A, Unnithan VB, Mika P (2005) Differences in thoracic kyphosis and in back muscle strength in women with bone loss due to osteoporosis. Spine 30(2):241–246PubMedCrossRefPubMedCentralGoogle Scholar
  59. Miyakoshi N, Hongo M, Maekawa S, Ishikawa Y, Shimada Y, Okada K, Itoi E (2005) Factors related to spinal mobility in patients with postmenopausal osteoporosis. Osteoporos Int 16(12):1871–1874PubMedCrossRefPubMedCentralGoogle Scholar
  60. Miyazaki M, Hymanson HJ, Morishita Y, He W, Zhang H, Wu G, Kong MH, Tsumura H, Wang JC (2008) Kinematic analysis of the relationship between sagittal alignment and disc degeneration in the cervical spine. Spine 33(23):E870–E876PubMedCrossRefPubMedCentralGoogle Scholar
  61. Moroney SP, Schultz AB, Miller JA (1988) Analysis and measurement of neck loads. J Orthop Res 6(5):713–720PubMedCrossRefPubMedCentralGoogle Scholar
  62. Moustafa IM, Diab AAM, Hegazy FA, Harrison DE (2017) Does rehabilitation of cervical lordosis influence sagittal cervical spine flexion extension kinematics in cervical spondylotic radiculopathy subjects? J Back Musculoskelet Rehabil 30(4):937–941PubMedCrossRefPubMedCentralGoogle Scholar
  63. Nigg BM, Cole GK, Bruggemann GP (1995) Impact forces during heel toe running. J Appl Biomech 11(4):407–432CrossRefGoogle Scholar
  64. Oatis C (2004) Biomechanics of skeletal muscle. Kinesiology: the mechanics and pathomechanics of human movement, 2nd edn. Lippincott Williams & Wilkins, New York, pp 44–66Google Scholar
  65. Olson LE, Millar AL, Dunker J, Hicks J, Glanz D (2006) Reliability of a clinical test for deep cervical flexor endurance. J Manip Physiol Ther 29(2):134–138CrossRefGoogle Scholar
  66. Panjabi MM, Oda T, Crisco JJ III, Dvorak J, Grob D (1993) Posture affects motion coupling patterns of the upper cervical spine. J Orthop Res 11(4):525–536PubMedCrossRefPubMedCentralGoogle Scholar
  67. Patwardhan AG, Havey RM, Ghanayem AJ, Diener H, Meade KP, Dunlap B, Hodges SD (2000) Load-carrying capacity of the human cervical spine in compression is increased under a follower load. Spine 25(12):1548–1554PubMedCrossRefPubMedCentralGoogle Scholar
  68. Pavlova AV, Meakin JR, Cooper K, Barr RJ, Aspden RM (2018) Variation in lifting kinematics related to individual intrinsic lumbar curvature: an investigation in healthy adults. BMJ Open Sport Exerc Med 4(1):e000374PubMedPubMedCentralCrossRefGoogle Scholar
  69. Pope MH, Panjabi M (1985) Biomechanical definitions of spinal instability. Spine 10(3):255–256PubMedCrossRefPubMedCentralGoogle Scholar
  70. Pozzo T, Berthoz A, Lefort L (1990) Head stabilization during various locomotor tasks in humans. I. Normal subjects. Exp Brain Res 82(1):97–106PubMedCrossRefPubMedCentralGoogle Scholar
  71. Pozzo T, Berthoz A, Vitte E, Lefort L (1991) Head stabilization during locomotion. Perturbations induced by vestibular disorders. Acta Otolaryngol Suppl 481:322–327PubMedCrossRefGoogle Scholar
  72. Rak Y (1993) Morphological variation in Homo neanderthalensis and Homo sapiens in the Levant. In: Species, species concepts and primate evolution. Springer, New York, NY, pp 523–536CrossRefGoogle Scholar
  73. Rhodes JA, Churchill SE (2009) Throwing in the middle and upper Paleolithic: inferences from an analysis of humeral retroversion. J Hum Evol 56(1):1–10PubMedCrossRefPubMedCentralGoogle Scholar
  74. Ro H, Gong W, Ma S (2010) Correlations between and absolute rotation angle, anterior weight bearing, range of flexion and extension motion in cervical herniated nucleus pulposus. J Phys Ther Sci 22(4):447–450CrossRefGoogle Scholar
  75. Sanders WJ (1998) Comparative morphometric study of the australopithecine vertebral series Stw-H8/H41. J Hum Evol 34(3):249–302PubMedCrossRefGoogle Scholar
  76. Sarwahi V, Boachie-Adjei O, Backus SI, Taira G (2002) Characterization of gait function in patients with postsurgical sagittal (flatback) deformity: a prospective study of 21 patients. Spine 27(21):2328–2337PubMedCrossRefGoogle Scholar
  77. Schenkman M, Shipp KM, Chandler J, Studenski SA, Kuchibhatla M (1996) Relationships between mobility of axial structures and physical performance. Phys Ther 76(3):276–285PubMedCrossRefGoogle Scholar
  78. Schiess R, Haeusler M (2013) No skeletal dysplasia in the nariokotome boy KNM-WT 15000 (Homo erectus)—a reassessment of congenital pathologies of the vertebral column. Am J Phys Anthropol 150(3):365–374PubMedCrossRefGoogle Scholar
  79. Schmid S, Bruhin B, Ignasiak D, Romkes J, Taylor WR, Ferguson SJ, Brunner R, Lorenzetti S (2017) Spinal kinematics during gait in healthy individuals across different age groups. Hum Mov Sci 54:73–81PubMedCrossRefGoogle Scholar
  80. Schmidt H, Kettler A, Rohlmann A, Claes L, Wilke H-J (2007) The risk of disc prolapses with complex loading in different degrees of disc degeneration–a finite element analysis. Clin Biomech 22(9):988–998CrossRefGoogle Scholar
  81. Sinaki M, Itoi E, Rogers JW, Bergstralh EJ, Wahner HW (1996) Correlation of Back extensor strength with thoracic kyphosis and lumbar lordosis in estrogen-deficient Women1. Am J Phys Med Rehabil 75(5):370–374PubMedCrossRefPubMedCentralGoogle Scholar
  82. Thigpen CA, Padua DA, Michener LA, Guskiewicz K, Giuliani C, Keener JD, Stergiou N (2010) Head and shoulder posture affect scapular mechanics and muscle activity in overhead tasks. J Electromyogr Kinesiol 20(4):701–709PubMedCrossRefPubMedCentralGoogle Scholar
  83. Trinkaus E (1975) Squatting among the Neandertals: a problem in the behavioral interpretation of skeletal morphology. J Archaeol Sci 2(4):327–351CrossRefGoogle Scholar
  84. Vergroesen P-P, Kingma I, Emanuel KS, Hoogendoorn RJ, Welting TJ, van Royen BJ, van Dieën JH, Smit TH (2015) Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthr Cartil 23(7):1057–1070PubMedCrossRefPubMedCentralGoogle Scholar
  85. Walker ML, Rothstein JM, Finucane SD, Lamb RL (1987) Relationships between lumbar lordosis, pelvic tilt, and abdominal muscle performance. Phys Ther 67(4):512–516PubMedCrossRefPubMedCentralGoogle Scholar
  86. Wang C-H, McClure P, Pratt NE, Nobilini R (1999) Stretching and strengthening exercises: their effect on three-dimensional scapular kinematics. Arch Phys Med Rehabil 80(8):923–929PubMedCrossRefPubMedCentralGoogle Scholar
  87. Whitcome KK, Shapiro LJ, Lieberman DE (2007) Fetal load and the evolution of lumbar lordosis in bipedal hominins. Nature 450(7172):1075PubMedCrossRefPubMedCentralGoogle Scholar
  88. Whittle MW (1999) Generation and attenuation of transient impulsive forces beneath the foot: a review. Gait Posture 10(3):264–275PubMedCrossRefPubMedCentralGoogle Scholar
  89. Whittle MW, Levine D (1999) Three-dimensional relationships between the movements of the pelvis and lumbar spine during normal gait. Hum Mov Sci 18(5):681–692CrossRefGoogle Scholar
  90. Wilke H-J, Wolf S, Claes LE, Arand M, Wiesend A (1995) Stability increase of the lumbar spine with different muscle groups. A biomechanical in vitro study. Spine 20(2):192–198PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ella Been
    • 1
    • 2
  • Jeannie F. Bailey
    • 3
  1. 1.Department of Sports Therapy, Faculty of Health ProfessionsOno Academic CollegeKiryat OnoIsrael
  2. 2.Department of Anatomy and Anthropology, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations