Advertisement

The Water Balance in Agricultural and Natural Systems

  • Klaus Reichardt
  • Luís Carlos Timm
Chapter

Abstract

The complete and direct water balance for agricultural and natural systems is presented in detail, discussing all components: rainfall, irrigation, runoff, evapotranspiration, drainage below the root zone, and, finally, the changes of soil water content as a function of depth and time close the balance. Evaluation of soil erosion is presented in conjunction with the discussion of runoff. Other methodologies to obtain the water balance are also discussed, like those based mainly on meteorological data. It is shown that the water balance is a fundamental tool for water management practices. At the end of the chapter, a holistic view of the Soil-Plant-Atmosphere System is presented based on the knowledge of the water balance components.

References

  1. Albaladejo Montoro J, Stocking MA (1989) Comparative evaluation of two models in predicting storm soil loss from erosion plots in semi-arid Spain. Catena 16:227–236CrossRefGoogle Scholar
  2. Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment: part I. Model development. J Am Water Resour Assoc 34:73–89CrossRefGoogle Scholar
  3. Bacchi OOS, Reichardt K, Sparovek G, Ranieri SBL (2000) Soil erosion evaluation in a small watershed in Brazil through 137-Cs fallout redistribution analysis and conventional models. Acta Geol Hisp 35:251–259Google Scholar
  4. Bacchi OOS, Reichardt K, Sparovek G (2003) Sediment spatial distribution evaluated by three methods and its relation to some soil properties. Soil Tillage Res 69:117–125CrossRefGoogle Scholar
  5. Bertoni J, Lombardi Neto F (1990) Conservação do solo. Ícone, São PauloGoogle Scholar
  6. Beskow S (2009) LASH model: a hydrological simulation tool in GIS framework. Departamento de Engenharia, Universidade Federal de Lavras, Lavras, Tese de DoutoradoGoogle Scholar
  7. Beskow S, Mello CR, Norton LD, Curi N, Viola MR, Avanzi JC (2009) Soil erosion prediction in the Grande River, Brazil using distributed modeling. Catena 79:49–59CrossRefGoogle Scholar
  8. Beskow S, Mello CR, Norton LD, Silva AM (2011a) Performance of a distributed semi-con-ceptual hydrological model under tropical watershed conditions. Catena 86:160–171CrossRefGoogle Scholar
  9. Beskow S, Mello CR, Norton LD (2011b) Development, sensitivity and uncertainty analysis of LASH model. Sci Agric 68:265–274CrossRefGoogle Scholar
  10. Beskow S, Timm LC, Tavares VEQ, Caldeira TL, Aquino LS (2016) Potential of the LASH model for water resources management in data-scarce basins: a case study of the Fragata River basin, Southern Brazil. Hydrol Sci J 61:2567–2578CrossRefGoogle Scholar
  11. Bortolotto RP, Bruno IP, Dourado-Neto D, Timm LC, Silva AN, Reichardt K (2011) Soil profile internal drainage for a central pivot fertigated coffee crop. Rev Ceres 58:723–728CrossRefGoogle Scholar
  12. Caldeira TL, Mello CR, Beskow S, Timm LC, Viola MR (2019) LASH hydrological model: an analysis focused on spatial discretization. Catena 173:183–193CrossRefGoogle Scholar
  13. Camargo AP (1961) Contribuição para a determinação da evapotranspiração potencial no Estado de São Paulo. Tese de Doutorado, Escola Superior de Agricultura Luiz de Queiroz. Universidade de São Paulo, PiracicabaGoogle Scholar
  14. Camargo AP (1964) Balanço hídrico no Estado de São Paulo. Instituto Agronômico de Campinas, CampinasGoogle Scholar
  15. Camargo AP (1978) Balanço hídrico no Estado de São Paulo. Instituto Agronômico de Campinas, CampinasGoogle Scholar
  16. Correchel V, Bacchi OOS, Maria IC, Dechen SCF, Reichardt K (2006) Erosion rates evaluated by the 137 Cs technique and direct measurements on long-term runoff plots. Soil Tillage Res 86:199–208CrossRefGoogle Scholar
  17. Daian FJ, Vachaud G (1972) Methode d’evaluation du bilan hydrique in situ a partir de la mesure des teneures en eau et des succions. In: Symposium on isotopes and radiation in soil-plant relationships including forestry. International Atomic Energy Agency, Vienna, pp 649–660Google Scholar
  18. De Roo APJ, Wesseling CG, Ritsema CJ (1996) LISEM: a single event physically-based hydrologic and soil erosion model for drainage basins: I. Theory, input and output. Hydrol Process 10:1107–1117CrossRefGoogle Scholar
  19. Doorenbos J, Kassam AH (1994) Efeito da água no rendimento das culturas. Tradução de H Ghey HR, Sousa AA, Damasceno FAV, Medeiros JF (tradutores). Universidade Federal da Paraíba, Campina GrandeGoogle Scholar
  20. Dourado-Neto D, De Jong van Lier Q (1993) Estimativa do armazenamento de água no solo para realização de balanço hídrico. Rev Bras Ciênc Solo 17:9–15Google Scholar
  21. Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28:1015–1031CrossRefGoogle Scholar
  22. Fagan EB (2007) A cultura da soja: modelo de crescimento e aplicação da estrobilurina piraclostrobina. Tese de Doutorado, Escola Superior de Agricultura Luiz de Queiroz. Universidade de São Paulo, PiracicabaGoogle Scholar
  23. Foster GR, Moldenhauer WC, Wischmeier WH (1985) Transferability of US technology for prediction and control of erosion in the tropics. In: Symposium on soil erosion and conservation in the tropics. American Society of Agronomy, Madison, WI, pp 135–149Google Scholar
  24. Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future research directions. Trans ASABE 50:1211–1250CrossRefGoogle Scholar
  25. Heifig LC (2002) Plasticidade da cultura da soja (Glycine max (L.) Merril) em diferentes arranjos espaciais. Dissertação de Mestrado, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, BrazilGoogle Scholar
  26. Hickley R, Smith A, Jankowski P (1994) Slope length calculations from a DEM within ARC/Info grid. Comp Env Urban Sys 18:365–380CrossRefGoogle Scholar
  27. Knisel WG (1980) CREAMS: a field-scale model for chemicals, runoff and erosion from agricultural management systems. United States Department of Agriculture, Washington, DCGoogle Scholar
  28. Laflen JM, Lane LJ, Foster GR (1991) WEPP: a new generation of erosion prediction technology. J Soil Water Conserv 46:34–38Google Scholar
  29. Lal R (1988) Soil erosion by wind and water: problems and prospects. In: Lal R (ed) Soil erosion research methodology. Soil and Water Conservation Society of America, Ankeny, IA, pp 1–8Google Scholar
  30. Lane LJ, Renard KG, Foster GR, Laflen JM (1992) Development and application of modern soil erosion prediction technology. Aust J Soil Res 30:893–912CrossRefGoogle Scholar
  31. LaRue ME, Nielsen DR, Hagan RM (1968) Soil water flux below a ryegrass root zone. Agron J 60:625–629CrossRefGoogle Scholar
  32. Lima WP, Reichardt K (1977) Regime de água do solo sob florestas homogêneas de eucalipto e pinheiro. Centro de Energia Nuclear na Agricultura. Universidade de São Paulo, PiracicabaGoogle Scholar
  33. Lombardi Neto F, Bertoni J (1975) Erodibilidade de solos paulistas. Instituto Agronômico de Campinas, CampinasGoogle Scholar
  34. Lombardi Neto F, Moldenhauer WC (1992) Erosividade da chuva: sua distribuição e relação com as perdas de solo em Campinas (SP). Bragantia 51:189–196CrossRefGoogle Scholar
  35. Marin FR, Sentelhas PC, Ungaro MRG (2000) Perda de rendimento potencial da cultura do girassol por deficiência hídrica, no Estado de São Paulo. Sci Agric 57:1–6CrossRefGoogle Scholar
  36. Mello CR, Viola MR, Norton LD, Silva AM, Weimar FA (2008) Development and application of a simple hydrologic model simulation for a Brazilian headwater basin. Catena 75:235–247CrossRefGoogle Scholar
  37. Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Ser A 193:120–145CrossRefGoogle Scholar
  38. Pereira AR, Ferraz ESB, Reichardt K, Libardi PL (1974) Estimativa da evapotranspiração e da drenagem profunda em cafezais cultivados em solos podzolizados Lins e Marília. Centro de Energia Nuclear na Agricultura. Universidade de São Paulo, PiracicabaGoogle Scholar
  39. Pereira AR, Angelocci LR, Sentelhas PC (2002) Agrometeorologia: fundamentos e aplicações práticas. Agropecuária, GuaíbaGoogle Scholar
  40. Pinto VM, Reichardt K, van Dam J, Van Lier QDJ, Bruno IP, Durigon A, Dourado-Neto D, Bortolotto RP (2015) Deep drainage modeling for a fertigated coffee plantation in the Brazilian savanna. Agric Water Manag 140C:130–140CrossRefGoogle Scholar
  41. Pires LF, Bacchi OOS, Correchel V, Reichardt K, Filippe J (2009) Riparian forest potential to retain sediment and carbon evaluated by the 137 Cs fallout and carbon isotopic technique. Anais Acad Bras Ci 81:271–279CrossRefGoogle Scholar
  42. Ranieri SBL (1996) Avaliação de métodos e escalas de trabalho para determinação de risco de erosão em bacia hidrográfica utilizando Sistema de Informações Geográficas (SIG). Master Dissertation, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, BrazilGoogle Scholar
  43. Ranzani G (1971) A marcha anual d’água disponível do solo. Escola Agricultura Luiz de Queiroz/Universidade de São Paulo, PiracicabaGoogle Scholar
  44. Reichardt K, Libardi PL, Santos JM (1974) An analysis of soil-water movement in the field. II. Water balance in a snap bean crop. Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, PiracicabaGoogle Scholar
  45. Reichardt K, Libardi PL, Saunders LCU, Cadima A (1979) Dinâmica da água em cultura de milho. Rev Bras Ciênc Solo 3:1–5Google Scholar
  46. Reichardt K, Libardi PL, Moraes SO, Bacchi OOS, Turatti AL, Villagra MM (1990) Soil spatial variability and its implications on the establishment of water balances. International Congress of Soil Science, International Union Soil Science, Kyoto, pp 41–46Google Scholar
  47. Reichardt K, Angelocci LR, Bacchi OOS, Pilotto JE (1995) Daily rainfall variability at a local scale (1,000 ha), in Piracicaba, SP, Brazil, and its implications on soil recharge. Sci Agric 52:43–49CrossRefGoogle Scholar
  48. Renard KG, Mausbach MJ (1990) Tools for conservation. In: Larson WE, Foster GR, Allmaras RR, Smith CM (eds) Proceedings of soil erosion and productivity workshop. University of Minnesota, Minneapolis, MN, pp 55–64Google Scholar
  49. Renger M, Giesel W, Strebel O, Lorch S (1970) Erste ergebnisse zur quantitativen erfassung der wasserhaushaltskomponenten in der ungessättigten bodenzone. Z Pflanzenernährung Bod 126:15–35CrossRefGoogle Scholar
  50. Rijtema PE, Aboukhaled A (1975) Crop water use. In: Aboukhaled A, Arar A, Balba AM, Bishay BG, Kadry LT, Rijtema PE, Taher A (eds) Research on crop water use, salt affect-ed soils and drainage in the Arab Republic of Egypt. FAO Regional Office for the Near East, Cairo, pp 5–61Google Scholar
  51. Rolim GS, Sentelhas PC, Barbieri V (1998) Planilhas no ambiente Excell para cálculos de balanços hídricos: normal, sequencial, de cultura e de produtividade real e potencial. Rev Bras Agromet 6:133–137Google Scholar
  52. Rose CW, Stern WR (1967) Determination of withdrawal of water from soil by crop roots as function of depth and time. Aust J Soil Res 5:11–19CrossRefGoogle Scholar
  53. Silva AL, Roveratti R, Reichardt K, Bacchi OOS, Timm LC, Bruno IP, Oliveira JCM, Dourado-Neto D (2006) Variability of water balance components in a coffee crop grown in Brazil. Sci Agric 63:105–114CrossRefGoogle Scholar
  54. Silva AL, Bruno IP, Reichardt K, Bacchi OOS, Dourado-Neto D, Favarin JL, Costa FMP, Timm LC (2009) Soil water extraction by roots and Kc for the coffee crop. Agriambi 13:257–261Google Scholar
  55. Silva AN, Bortolotto RP, Tomaz HVQ, Reis LG, Olinda RA, Heiffig-del-Águila LS, Reichardt K (2013) Pot irrigation control through the climatologic sequential water balance. Rev Agric 88:101–106Google Scholar
  56. Steinmetz AA, Cassalho F, Caldeira TL, Oliveira VA, Beskow S, Timm LC (2018) Assessment of soil loss vulnerability in data-scarce watersheds in southern Brazil. Cienc Agrotecnol 42:575–587CrossRefGoogle Scholar
  57. Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc, Sunderland, MAGoogle Scholar
  58. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94CrossRefGoogle Scholar
  59. Thornthwaite CW, Mather JR (1955) The water balance. Drexel Institute of Technology, Centerton, NJGoogle Scholar
  60. Timm LC, Oliveira JCM, Tominaga TT, Cássaro FAM, Reichardt K, Bacchi OOS (2002) Water balance of a sugarcane crop: quantitative and qualitative aspects of its measurement. Agriambi 6:57–62Google Scholar
  61. Timm LC, Dourado-Neto D, Bacchi OOS, Hu W, Bortolotto RP, Silva AL, Bruno IP, Reichardt K (2011) Temporal variability of soil water storage evaluated for a coffee field. Aust J Soil Res 49:77–86CrossRefGoogle Scholar
  62. Toy TJ, Osterkamp WR (1995) The applicability of RUSLE to geomorphic studies. J Soil Water Conserv 50:498–503Google Scholar
  63. Vieira SR, Lombardi Neto F (1995) Variabilidade espacial do potencial de erosão das chuvas do estado de São Paulo. Bragantia 54:405–412CrossRefGoogle Scholar
  64. Walling DE, Quine TA (1993) Use of caesium-137 as a tracer of erosion and sedimentation. In: Handbook for application of the Caesium-137 technique, Exeter. Department of Geography, University of Exeter, ExeterGoogle Scholar
  65. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses - a guide to conservation planning. United States Department of Agriculture, Washington DCGoogle Scholar
  66. Wischmeier WH, Johnson CB, Cross BW (1971) A soil erodibility nomograph for farmland and construction sites. J Soil Water Conserv 26:189–193Google Scholar
  67. Young R, Onstad C, Bosch D, Anderson W (1986) Agricultural nonpoint source pollution model: a watershed analysis tool, model documentation. Agricultural Research Service, US Department of Agriculture, Morris, MNGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Klaus Reichardt
    • 1
  • Luís Carlos Timm
    • 2
  1. 1.Centro de Energia Nuclear na Agricultura and Escola Superior de Agricultura “Luiz de Queiróz”University of Sao PauloPiracicabaBrazil
  2. 2.Rural Engineering Department, Faculty of AgronomyFederal University of PelotasCapão do LeãoBrazil

Personalised recommendations