Advertisement

Metabolomic Approaches in Plant Research

  • Ayesha T. TahirEmail author
  • Qaiser Fatmi
  • Asia Nosheen
  • Mahrukh Imtiaz
  • Salma Khan
Chapter

Abstract

Metabolomics is an emerging approach in the realm of omics. Despite its rapid emergence two decades ago, it has already proven an impressive potential in improving traits related to agriculture. This chapter will help readers to familiarize with plant metabolites and their importance in plants and analytical techniques used in metabolomics and computational metabolomics (from digital recording of spectra to their identification as well as quantification). Web tools, software, and metabolome databases commonly used for plant metabolomics are summarized. We also discussed progress in the field of metabolomics data integration with related “omics” fields, particularly functional genomics. Challenges faced by agricultural metabolomics along with future research avenues to combat hunger (in terms of both quality and quantity) are described.

Keywords

Metabolomics Bioinformatics Computational metabolomics Metabolomics techniques Plants 

References

  1. Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, Saito K, Kanaya S (2012) KNApSAcK family databases: integrated metabolite–plant species databases for multifaceted plant research. Plant Cell Physiol 53(2):e1–e1PubMedGoogle Scholar
  2. Aha D, Kibler WD, Albert MK (1991) Instance-based learning algorithms. Mach Learn 6(1):37–66Google Scholar
  3. Aharoni A, Galili G (2011) Metabolic engineering of the plant primary–secondary metabolism interface. Curr Opin Biotechnol 22(2):239–244CrossRefPubMedGoogle Scholar
  4. Andreev VP, Rejtar T, Chen HS, Moskovets EV, Ivanov AR, Karger BL (2003) A universal denoising and peak picking algorithm for LC− MS based on matched filtration in the chromatographic time domain. Anal Chem 75(22):6314–6326CrossRefPubMedGoogle Scholar
  5. Bais P, Moon SM, He K, Leitao R, Dreher K, Walk T, Wurtele ES (2010) PlantMetabolomics.org: a web portal for plant metabolomics experiments. Plant Physiol 152(4):1807–1816CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beckonert O, Bollard ME, Ebbels TM, Keun HC, Antti H, Holmes E, Nicholson JK (2003) NMR-based metabonomic toxicity classification: hierarchical cluster analysis and k-nearest-neighbour approaches. Anal Chim Acta 490(1–2):3–15CrossRefGoogle Scholar
  7. Bellew M, Coram M, Fitzgibbon M, Igra M, Randolph T, Wang P, Chen J (2006) A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS. Bioinformatics 22(15):1902–1909CrossRefPubMedGoogle Scholar
  8. Bersanelli M, Mosca E et al (2016) Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinforma 17(Suppl 2):15CrossRefGoogle Scholar
  9. Bertsch A, Gröpl C, Reinert K, Kohlbacher O (2011) Open MS and TOPP: open source software for LC-MS data analysis. In M. Hamacher, M. Eisenacher, & C. Stephan.Data mining in proteomics. New York, NY: Humana Press, p 353–367 Google Scholar
  10. Bingol K, Brüschweiler R (2015) Two elephants in the room: new hybrid nuclear magnetic resonance and mass spectrometry approaches for metabolomics. Curr Opin Clin Nutr Metab Care 18(5):471–477CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bingol K, Bruschweiler-Li L, Yu C, Somogyi A, Zhang F, Brüschweiler R (2015) Metabolomics beyond spectroscopic databases: a combined MS/NMR strategy for the rapid identification of new metabolites in complex mixtures. Anal Chem 87(7):3864–3870CrossRefPubMedPubMedCentralGoogle Scholar
  12. Blekherman G, Laubenbacher R, Cortes DF, Mendes P, Torti FM, Akman S, Shulaev V (2011) Bioinformatics tools for cancer metabolomics. Metabolomics 7(3):329–343CrossRefPubMedPubMedCentralGoogle Scholar
  13. Boccard J, Veuthey JL, Rudaz S (2010) Knowledge discovery in metabolomics: an overview of MS data handling. J Sep Sci 33(3):290–304CrossRefPubMedGoogle Scholar
  14. Breiman L (2001) Random forests. Mach Learn 45(1):5–32CrossRefGoogle Scholar
  15. Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bundy JG, Davey MP, Viant MR (2008) Environmental metabolomics: a critical review and future perspectives. Metabolomics 5(1):3–21CrossRefGoogle Scholar
  17. Caretto S, Linsalata V, Colella G, Giovanni M, Lattanzio V (2015) Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int J Mol Sci 16:26378–26394CrossRefPubMedPubMedCentralGoogle Scholar
  18. Castillo-Ordóñez WO, Tamarozzi ER et al (2017) Exploration of the acetylcholinesterase inhibitory activity of some alkaloids from Amaryllidaceae family by molecular docking in silico. Neurochem Res 42(10):2826–2830CrossRefPubMedGoogle Scholar
  19. Chandra H, Bishnoi P et al (2017) Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials—a review. Plan Theory 6(2):16Google Scholar
  20. Choi HK, Choi YH, Verberne M, Lefeber AW, Erkelens C, Verpoorte R (2004) Metabolic fingerprinting of wild type and transgenic tobacco plants by 1H NMR and multivariate analysis technique. Phytochemistry 65(7):857–864CrossRefPubMedGoogle Scholar
  21. Conforti F, Loizzo MR et al (2010) Quantitative determination of Amaryllidaceae alkaloids from Galanthus reginae-olgae subsp. vernalis and in vitro activities relevant for neurodegenerative diseases. Pharm Biol 48(1):2–9CrossRefPubMedGoogle Scholar
  22. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta Gen Subj 1830(6):3670–3695CrossRefGoogle Scholar
  23. Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF, Markley JL (2008) Metabolite identification via the madison metabolomics consortium database. Nat Biotechnol 26(2):162CrossRefPubMedGoogle Scholar
  24. Daskalchuk T, Ahiahonu P, Heath D, Yamazaki Y (2006) The use of non-targeted metabolomics in plant science. In: Plant metabolomics. Springer, Berlin, pp 311–325CrossRefGoogle Scholar
  25. Daviss, Bennett (2005) Growing pains for metabolomics. Scientist 19(8):25–28Google Scholar
  26. de Falco BG, Incerti et al (2017) Metabolomic analysis of Salvia hispanica seeds using NMR spectroscopy and multivariate data analysis. Ind Crop Prod 99:86–96CrossRefGoogle Scholar
  27. De Souza DP, Saunders EC, McConville MJ, Likić VA (2006) Progressive peak clustering in GC-MS Metabolomic experiments applied to Leishmania parasites. Bioinformatics 22(11):1391–1396CrossRefPubMedGoogle Scholar
  28. De Vos RC, Moco S, Lommen A, Keurentjes JJ, Bino RJ, Hall RD (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc 2(4):778–791CrossRefPubMedGoogle Scholar
  29. Defernez M, Le Gall G (2013) Strategies for data handling and statistical analysis in metabolomics studies. In In: Rolin D (ed) Advances in botanical research, vol 67. Elsevier Academic Press, San Diego, USA, pp 493–555Google Scholar
  30. Dettmer K, Aronov PA et al (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26(1):51–78CrossRefPubMedPubMedCentralGoogle Scholar
  31. Díaz-Uriarte R, De Andres SA (2006) Gene selection and classification of microarray data using random forest. BMC Bioinforma 7(1):3CrossRefGoogle Scholar
  32. Edward HD (2014) Biochemical facts behind the definition and properties of metabolites, Ebook, Biochemistry and Biophysics and Faculty of Nutrition Texas A&M UniversityGoogle Scholar
  33. Farag MA, Porzel A, Schmidt J, Wessjohann LA (2012) Metabolite profiling and fingerprinting of commercial cultivars of Humulus lupulus L. (hop): a comparison of MS and NMR methods in metabolomics. Metabolomics 8(3):492–507CrossRefGoogle Scholar
  34. Fernie AR, Klee HJ (2011) The use of natural genetic diversity in the understanding of metabolic organization and regulation. Front Plant Sci 2:59PubMedPubMedCentralGoogle Scholar
  35. Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25(1):39–48CrossRefPubMedGoogle Scholar
  36. Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2(3):155–168CrossRefPubMedPubMedCentralGoogle Scholar
  37. Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol 48:155–171CrossRefPubMedGoogle Scholar
  38. Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18(11):1157–1161CrossRefPubMedGoogle Scholar
  39. Francisco M, Joseph B et al (2016) Genome wide association mapping in Arabidopsis thaliana identifies novel genes involved in linking allyl glucosinolate to altered biomass and defense. Front Plant Sci 7:1010PubMedPubMedCentralGoogle Scholar
  40. Fukushima A, Kusano M (2013) Recent progress in the development of metabolome databases for plant systems biology. Front Plant Sci 4:73CrossRefPubMedPubMedCentralGoogle Scholar
  41. George P (2005) Metabolomics comes of age? Scientist 19(11):8Google Scholar
  42. Gupta OP, Karkute SG, Banerjee S, Meena NL, Dahuja A (2017) Contemporary understanding of miRNA-based regulation of secondary metabolites biosynthesis in plants. Front Plant Sci 8:374.  https://doi.org/10.3389/fpls.2017.00374CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hamada K, Hongo K et al (2011) OryzaExpress: an integrated database of gene expression networks and omics annotations in rice. Plant Cell Physiol 52(2):220–229CrossRefPubMedGoogle Scholar
  44. Hartmann T, Kutchan TM, Strack D (2005) Evolution of metabolic diversity. Phytochemistry 66:1198–1199CrossRefPubMedGoogle Scholar
  45. Hegeman AD (2010) Plant metabolomics—meeting the analytical challenges of comprehensive metabolite analysis. Brief Funct Genomics 9(2):139–148CrossRefPubMedGoogle Scholar
  46. Herwig OG, Ludwig-Muller J (2014) Plant natural products: synthesis, biological functions and practical applications, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  47. Hill CB, Taylor JD et al (2015) Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology. Plant Sci 233:143–154CrossRefPubMedGoogle Scholar
  48. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714CrossRefPubMedGoogle Scholar
  49. Huang S, Chaudhary K et al (2017) More is better: recent progress in multi-omics data integration methods. Front Genet 8:84CrossRefPubMedPubMedCentralGoogle Scholar
  50. Iijima Y, Nakamura Y, Ogata Y, Tanaka K, Sakurai N, Suda K, Suzuki T, Suzuki H, Okazaki K, Kitayama M, Kanaya S, Aoki K, Shibata D (2008) Metabolite annotations based on the integration of mass spectral information. Plant 54(5):949–962Google Scholar
  51. Johnson SR, Lange BM (2015) Open-access metabolomics databases for natural product research: present capabilities and future potential. Front Bioeng Biotechnol 3:22CrossRefPubMedPubMedCentralGoogle Scholar
  52. Johnson CH, Ivanisevic J et al (2015) Bioinformatics: the next frontier of metabolomics. Anal Chem 87(1):147–156CrossRefPubMedGoogle Scholar
  53. Jonsson P, Bruce SJ, Moritz T, Trygg J, Sjöström M, Plumb R, Antti H (2005) Extraction, interpretation and validation of information for comparing samples in metabolic LC/MS data sets. Analyst 130(5):701–707CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jordan KW, Nordenstam J, Lauwers GY, Rothenberger DA, Alavi K, Garwood M, Cheng LL (2009) Metabolomic characterization of human rectal adenocarcinoma with intact tissue magnetic resonance spectroscopy. Dis Colon Rectum 52(3):520–525CrossRefPubMedPubMedCentralGoogle Scholar
  55. Jorge TF, Rodrigues JA et al (2016) Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom Rev 35(5):620–649CrossRefPubMedGoogle Scholar
  56. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30CrossRefPubMedPubMedCentralGoogle Scholar
  57. Katajamaa M, Orešič M (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158(1–2):318–328CrossRefPubMedGoogle Scholar
  58. Katajamaa M, Miettinen J, Orešič M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22(5):634–636CrossRefPubMedGoogle Scholar
  59. Kikuchi J, Shinozaki K, Hirayama T (2004) Stable isotope labeling of Arabidopsis thaliana for an NMR-based metabolomics approach. Plant Cell Physiol 45(8):1099–1104CrossRefPubMedGoogle Scholar
  60. Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5(3):536–549CrossRefPubMedGoogle Scholar
  61. Kleessen S, Nikoloski Z (2012) Dynamic regulatory on/off minimization for biological systems under internal temporal perturbations. BMC Syst Biol 6:16–16CrossRefPubMedPubMedCentralGoogle Scholar
  62. Knoch D, Riewe D et al (2017) Genetic dissection of metabolite variation in Arabidopsis seeds: evidence for mQTL hotspots and a master regulatory locus of seed metabolism. J Exp Bot 68(7):1655–1667CrossRefPubMedPubMedCentralGoogle Scholar
  63. Krishnan P, Kruger NJ et al (2005) Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56(410):255–265CrossRefPubMedGoogle Scholar
  64. Kudo T, Akiyama K et al (2013) UniVIO: a multiple omics database with hormonome and transcriptome data from rice. Plant Cell Physiol 54(2):e9–e9CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kudo T, Kobayashi M et al (2017) TOMATOMICS: a web database for integrated omics information in tomato. Plant Cell Physiol 58(1):e8–e8CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kumar A, Yadav A, Gupta N, Kumar S, Gupta N, Kumar S, Gurjar H (2015) Metabolites in plants and its classification. World J Pharm Pharm 4:287–305Google Scholar
  67. Kumar R, Bohra A et al (2017) Metabolomics for plant improvement: status and prospects. Front Plant Sci 8:1302CrossRefPubMedPubMedCentralGoogle Scholar
  68. Lamesch P, Berardini TZ et al (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40(Database issue):D1202–D1210CrossRefPubMedGoogle Scholar
  69. Last RL, Jones AD et al (2007) Towards the plant metabolome and beyond. Nat Rev Mol Cell Biol 8:167CrossRefPubMedGoogle Scholar
  70. Lipka AE, Gore MA et al (2013) Genome-wide association study and pathway-level analysis of tocochromanol levels in maize grain. G3: Genes Genomes Genet 3(8):1287–1299CrossRefGoogle Scholar
  71. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1(1):387–396CrossRefPubMedGoogle Scholar
  72. Liu K, Abdullah AA et al (2017) Novel approach to classify plants based on metabolite-content similarity. Biomed Res Int 2017:5296729PubMedPubMedCentralGoogle Scholar
  73. Lundberg P, Vogel T, Malusek A, Lundquist PO, Cohen L, Dahlqvist O (2005) MDL – the magnetic resonance metabolomics database (mdl.imv.liu.se). ESMRMB, BaselGoogle Scholar
  74. Luo J (2015) Metabolite-based genome-wide association studies in plants. Curr Opin Plant Biol 24:31–38CrossRefPubMedGoogle Scholar
  75. Mahdavi V, Farimani MM et al (2015) A targeted metabolomics approach toward understanding metabolic variations in rice under pesticide stress. Anal Biochem 478:65–72CrossRefPubMedGoogle Scholar
  76. Malitsky S, Blum E, Less H, Venger I, Elbaz M, Morin S, Eshed Y, Aharoni A (2008) The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol 148:2021–2049CrossRefPubMedPubMedCentralGoogle Scholar
  77. Matsuda F, Nakabayashi R et al (2015) Metabolome-genome-wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism. Plant J 81(1):13–23CrossRefPubMedGoogle Scholar
  78. Meier R, Ruttkies C et al (2017) Bioinformatics can boost metabolomics research. J Biotechnol 261:137–141CrossRefPubMedGoogle Scholar
  79. Mirza SB, Bokhari H, Fatmi MQ (2015) Exploring natural products from the biodiversity of Pakistan for computational drug discovery studies: collection, optimization, design and development of a chemical database (ChemDP). Curr Comput Aided Drug Des 11(2):102–109CrossRefPubMedGoogle Scholar
  80. Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort J, de Vos CH (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141(4):1205–1218CrossRefPubMedPubMedCentralGoogle Scholar
  81. Mutwil M, Klie S et al (2011) PlaNet: combined sequence and expression comparisons across plant networks derived from seven species. Plant Cell 23(3):895–910CrossRefPubMedPubMedCentralGoogle Scholar
  82. Ncube B, Staden J (2015) Tilting plant metabolism for improved metabolite biosynthesis and enhanced human benefit. Molecules 20:12698–12731CrossRefPubMedPubMedCentralGoogle Scholar
  83. Ncube B, Finnie J, Van Staden J (2012) Quality from the field: the impact of environmental factors as quality determinants in medicinal plants. S Afr J Bot 82:11–20CrossRefGoogle Scholar
  84. Nielsen J, Oliver S (2005) The next wave in metabolome analysis. Trends Biotechnol 23(11):544–546CrossRefPubMedGoogle Scholar
  85. Nielsen NPV, Carstensen JM, Smedsgaard J (1998) Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. J Chromatogr A 805(1–2):17–35CrossRefGoogle Scholar
  86. Nix HA (1990) National geographic information system – an achievable objective? In: Keynote address, AurisaGoogle Scholar
  87. Noel JP, Austin MB, Bomati EK (2005) Structure–function relationships in plant phenylpropanoid biosynthesis. Curr Opin Plant Biol 8:249–253CrossRefPubMedPubMedCentralGoogle Scholar
  88. Obayashi T, Okamura Y et al (2014) Evaluation of gene coexpression in agriculturally important plants. Plant Cell Physiol 55(1):e6–e6CrossRefPubMedPubMedCentralGoogle Scholar
  89. Ohyanagi H, Takano T et al (2015) Plant omics data center: an integrated web repository for interspecies gene expression networks with NLP-based curation. Plant Cell Physiol 56(1):e9–e9CrossRefPubMedGoogle Scholar
  90. Parry MAJ, Hawkesford MJ (2012) An integrated approach to crop genetic improvement. J Integr Plant Biol 54(4):250–259CrossRefPubMedGoogle Scholar
  91. Patti GJ, Yanes O, Siuzdak G (2012) Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263CrossRefPubMedPubMedCentralGoogle Scholar
  92. Paupière MJ, van Heusden AW, Bovy AG (2014) The metabolic basis of pollen thermo-tolerance: perspectives for breeding. Meta 4(4):889–920Google Scholar
  93. Poggio T, Girosi F (1990) Networks for approximation and learning. Proc IEEE 78(9):1481–1497CrossRefGoogle Scholar
  94. Pravdova V, Walczak B, Massart DL (2002) A comparison of two algorithms for warping of analytical signals. Anal Chim Acta 456(1):77–92CrossRefGoogle Scholar
  95. Rai A, Saito K (2016) Omics data input for metabolic modeling. Curr Opin Biotechnol 37:127–134CrossRefPubMedGoogle Scholar
  96. Ramalingam A, Kudapa H et al (2015) Proteomics and metabolomics: two emerging areas for legume improvement. Front Plant Sci 6:1116PubMedPubMedCentralGoogle Scholar
  97. Riedelsheimer CA, Czedik-Eysenberg et al (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217CrossRefGoogle Scholar
  98. Roberts LD, Souza AL, Gerszten RE, Clish CB (2012) Targeted metabolomics. Curr Protoc Mol Biol 30(2):1–24Google Scholar
  99. Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23(1):131–142CrossRefPubMedGoogle Scholar
  100. Roessner-Tunali U, Hegemann B, Lytovchenko A, Carrari F, Bruedigam C, Granot D, Fernie AR (2003) Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol 133(1):84–99CrossRefPubMedPubMedCentralGoogle Scholar
  101. Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61(1):463–489CrossRefPubMedGoogle Scholar
  102. Samuelsson LM, Larsson DG (2008) Contributions from metabolomics to fish research. Mol BioSyst 4(10):974–979CrossRefPubMedGoogle Scholar
  103. Sato Y, Takehisa H et al (2013) RiceXPro version 3.0: expanding the informatics resource for rice transcriptome. Nucleic Acids Res 41(Database issue):D1206–D1213CrossRefPubMedGoogle Scholar
  104. Sauerschnig C, Doppler M et al (2018) Methanol generates numerous artifacts during sample extraction and storage of extracts in metabolomics research. Meta 8(1):1CrossRefPubMedCentralGoogle Scholar
  105. Sauvage C, Segura V et al (2014) Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol 165(3):1120–1132CrossRefPubMedPubMedCentralGoogle Scholar
  106. Sawada Y, Hirai MY (2013) Integrated lc-ms/ms system for plant metabolomics. Comput Struct Biotechnol J 4(5):e201301011CrossRefPubMedPubMedCentralGoogle Scholar
  107. Sawada Y, Nakabayashi R, Yamada Y, Suzuki M, Sato M, Sakata A, Akiyama K, Sakurai T, Matsuda F, Aoki T, Hirai MY, Saito K (2012) RIKEN tandem mass spectral database (ReSpect) for phytochemicals: a plant-specific MS/MS-based data resource and database. Phytochemistry 82:38–45CrossRefPubMedGoogle Scholar
  108. Scott IM, Vermeer CP et al (2010) Enhancement of plant metabolite fingerprinting by machine learning. Plant Physiol 153(4):1506–1520CrossRefPubMedPubMedCentralGoogle Scholar
  109. Sekiyama Y, Okazaki K, Kikuchi J, Ikeda S (2017) NMR-based metabolic profiling of field-grown leaves from sugar beet plants harbouring different levels of resistance to Cercospora leaf spot disease. Metabolites 7(1):4. pii:E4CrossRefPubMedCentralGoogle Scholar
  110. Shen H, Grung B, Kvalheim OM, Eide I (2001) Automated curve resolution applied to data from multi-detection instruments. Anal Chim Acta 446(1–2):311–326CrossRefGoogle Scholar
  111. Shitan N (2016) Secondary metabolites in plants: transport and self-tolerance mechanisms. Biosci Biotechnol Biochem 80(7):1283–1293CrossRefPubMedGoogle Scholar
  112. Shyur LF, Yang NS (2008) Metabolomics for phytomedicine research and drug development. Curr Opin Chem Biol 12(1):66–71CrossRefPubMedGoogle Scholar
  113. Simó C, Ibáñez C et al (2014) Metabolomics of genetically modified crops. Int J Mol Sci 15(10):18941–18966CrossRefPubMedPubMedCentralGoogle Scholar
  114. Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27(6):747–751CrossRefGoogle Scholar
  115. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78(3):779–787CrossRefGoogle Scholar
  116. Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M (2012) Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr Bioinforma 7(1):96–108CrossRefGoogle Scholar
  117. Taketo O, Farit AM et al (2010) Metabolomics of medicinal plants: the importance of multivariate analysis of analytical chemistry data. Curr Comput Aided Drug Des 6(3):179–196CrossRefGoogle Scholar
  118. Taylor J, King RD, Altmann T, Fiehn O (2002) Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics 18(suppl_2):S241–S248. The Plant Journal 54(5), 949–962CrossRefPubMedGoogle Scholar
  119. Tian H, Lam S et al (2016) Metabolomics, a powerful tool for agricultural research. Int J Mol Sci 17(11):1871CrossRefPubMedCentralGoogle Scholar
  120. Tikunov Y, Lommen A, De Vos CR, Verhoeven HA, Bino RJ, Hall RD, Bovy AG (2005) A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 139(3):1125–1137CrossRefPubMedPubMedCentralGoogle Scholar
  121. Tohge T, de Souza LP et al (2014) Genome-enabled plant metabolomics. J Chromatogr B 966:7–20CrossRefGoogle Scholar
  122. Toubiana D, Fernie AR et al (2013) Network analysis: tackling complex data to study plant metabolism. Trends Biotechnol 31(1):29–36CrossRefPubMedGoogle Scholar
  123. Udayakumar M, Chandar DP, Arun N, Mathangi J, Hemavathi K, Seenivasagam R (2012) PMDB: plant metabolome database—a metabolomic approach. Med Chem Res 21(1):47–52CrossRefGoogle Scholar
  124. van der Hooft JJJ, Vervoort J, Bino RJ, de Vos CH (2012) Spectral trees as a robust annotation tool in LC–MS based metabolomics. Metabolomics 8(4):691–703CrossRefGoogle Scholar
  125. Viant MR (2008) Recent developments in environmental metabolomics. Mol BioSyst 4(10):980–986CrossRefPubMedGoogle Scholar
  126. Vinayavekhin N, Saghatelian A (2010) Untargeted metabolomics. Curr Protoc Mol Biol Chapter 30:Unit 30.1.1-24PubMedGoogle Scholar
  127. Wanichthanarak K, Fahrmann JF et al (2015) Genomic, proteomic, and metabolomic data integration strategies. Biomark Insights 10(Suppl 4):1–6PubMedPubMedCentralGoogle Scholar
  128. Ward JL, Harris C, Lewis J, Beale MH (2003) Assessment of 1H NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry 62(6):949–957CrossRefPubMedGoogle Scholar
  129. Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54(1):669–689CrossRefPubMedGoogle Scholar
  130. Wen W, Jin M et al (2018) An integrated multi-layered analysis of the metabolic networks of different tissues uncovers key genetic components of primary metabolism in maize. Plant J 93(6):1116–1128CrossRefPubMedGoogle Scholar
  131. Wettschereck D, Aha DW, Mohri T (1997) A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artif Intell Rev 11(1–5):273–314CrossRefGoogle Scholar
  132. Wiklund S, Johansson E, Sjöström L, Mellerowicz EJ, Edlund U, Shockcor JP, Trygg J (2008) Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 80(1):115–122CrossRefPubMedGoogle Scholar
  133. Wu S, Alseekh S et al (2016) Combined use of genome-wide association data and correlation networks unravels key regulators of primary metabolism in Arabidopsis thaliana. PLoS Genet 12(10):e1006363CrossRefPubMedPubMedCentralGoogle Scholar
  134. Wu S, Tohge T et al (2018) Mapping the arabidopsis metabolic landscape by untargeted metabolomics at different environmental conditions. Mol Plant 11(1):118–134CrossRefPubMedGoogle Scholar
  135. Wurtzel ET, Kutchan TM (2016) Plant metabolism, the diverse chemistry set of the future. Science 353(6305):1232CrossRefPubMedGoogle Scholar
  136. Zhang A, Sun H et al (2012) Modern analytical techniques in metabolomics analysis. Analyst 137(2):293–300CrossRefPubMedGoogle Scholar
  137. Zhou J, Liu H, Liu Y, Liu J, Zhao X, Yin Y (2016) Development and evaluation of a parallel reaction monitoring strategy for large-scale targeted metabolomics quantification. Anal Chem 88(8):4478–4486CrossRefPubMedGoogle Scholar
  138. Zierer J, Menni C et al (2015) Integration of ‘omics’ data in aging research: from biomarkers to systems biology. Aging Cell 14(6):933–944CrossRefPubMedPubMedCentralGoogle Scholar
  139. Zivy M, Wienkoop S et al (2015) The quest for tolerant varieties: the importance of integrating “omics” techniques to phenotyping. Front Plant Sci 6:448CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ayesha T. Tahir
    • 1
    Email author
  • Qaiser Fatmi
    • 1
  • Asia Nosheen
    • 1
  • Mahrukh Imtiaz
    • 1
  • Salma Khan
    • 1
  1. 1.Department of BiosciencesCOMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations