Bioinformatics Insights on Plant Vacuolar Proton Pyrophosphatase: A Proton Pump Involved in Salt Tolerance

  • Nageswara Rao Reddy Neelapu
  • Sandeep Solmon Kusuma
  • Titash Dutta
  • Challa SurekhaEmail author


Vacuolar proton-translocating inorganic pyrophosphatases (VPPases) are active proton transporters. They establish proton gradient across the endomembrane by the hydrolysis of inorganic pyrophosphate (PPi). VPPase activates secondary vacuolar active transport systems and provides tolerance to abiotic stress. VPPase is a simple proton pump with 13–16 transmembrane helices compactly folded in a rosette manner in two concentric walls. The core of VPPase contains an imidodiphosphate (IDP) and three highly conserved motifs CS1, CS2, and CS3. The core regulates the translocation of H+ ions from cytosol to vacuolar lumen. The pumping of H+ into vacuole builds electrochemical gradient which changes its pH and energizes various antiporters. This results in influx of Na+, K+, NO3, and Cl from cytosol to vacuole and reduces the toxicity in cytosol. This chapter provides an overview on bioinformatics approaches used to understand the 3D structure, motifs, function, and working model of VPPases.


Vacuolar proton pyrophosphatase Conserved motifs Abiotic stress Proton pumps 



The authors are grateful to Gandhi Institute of Technology and Management (GITAM) deemed-to-be-university, for providing necessary facilities to carry out the research work and for extending constant support in writing this review.


  1. Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anjaneyulu E, Reddy PS, Sunita MS, Kishor PBK, Meriga B (2014) Salt tolerance and activity of antioxidative enzymes of transgenic finger millet overexpressing a vacuolar H+-pyrophosphatase gene (SbVPPase) from Sorghum bicolor. J Plant Physiol 171(10):789–798CrossRefPubMedGoogle Scholar
  3. Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110CrossRefGoogle Scholar
  4. Baltscheffsky M, Nadanaciva S, Schultz A (1998) A pyrophosphate synthase gene: molecular cloning and sequencing of the cDNA encoding the inorganic pyrophosphate synthase from Rhodospirillum rubrum. Biochim Biophys Acta 1364:301–306CrossRefPubMedGoogle Scholar
  5. Baltscheffsky M, Schultz A, Baltscheffsky H (1999) HC-PPases: a tightly membranebound family. FEBS Lett 457:527–533CrossRefPubMedGoogle Scholar
  6. Baykov AA, Bakuleva NP, Rea PA (1993) Steady-state kinetics of substrate hydrolysis by vacuolar H+-pyrophosphatase: a simple three-state model. Eur J Biochem 217:755–762CrossRefPubMedGoogle Scholar
  7. Baykov AA, Cooperman BS, Goldman A, Lahti R (1999) Prog Mol Subcell Biol 23:127–150CrossRefPubMedGoogle Scholar
  8. Belogurov GA, Lahti R (2002) A lysine substitute for K+-A460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans. J Biol Chem 277:49651–49654CrossRefPubMedGoogle Scholar
  9. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434CrossRefGoogle Scholar
  10. Brini F, Gaxiola RA, Berkowitz GA, Masmoudi K (2005) Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant Physiol Biochem 43(4):347–354CrossRefPubMedGoogle Scholar
  11. Britten CJ, Turner JC, Rea PA (1989) Identification and purification of substrate-binding subunit of higher plant H+-translocating inorganic pyrophosphatase. FEBS Lett 256:200–206CrossRefGoogle Scholar
  12. Da Silva C, Zamperin G, Ferrarini A, Minio A, Dal Molin A, Venturini L, Buson G, Tononi P, Avanzato C, Zago E, Boido E (2013) The high polyphenol content of grapevine cultivar tannat berries is conferred primarily by genes that are not shared with the reference genome. Plant Cell 25(12):4777–4788CrossRefPubMedPubMedCentralGoogle Scholar
  13. Darley CP, Skiera LA, Northrop FD, Sanders D, Davies JM (1998) Tonoplast inorganic pyrophosphatase in Vicia faba guard cells. Planta 206:272–2777CrossRefGoogle Scholar
  14. Dong QL, Liu DD, An XH, Hu DG, Yao YX, Hao YJ (2011) MdVHP1 encodes an apple vacuolar H+-PPase and enhances stress tolerance in transgenic apple callus and tomato. J Plant Physiol 168(17):2124–2133CrossRefPubMedGoogle Scholar
  15. Ebrahimi A, Monfared SRA, Kashkooli AB (2015) Pyrophosphate-energized vacuolar membrane proton pump [Aeluropus littoralis] agronomy and plant breeding, Tehran University, Karaj, Alborz 31587-1167, IranGoogle Scholar
  16. Fan W (2011) Overexpression of the Na+/H+ antiporter gene from sweet potato. Cassava and sweetpotato biotechnology, direct submission to NCBI with accession no. AFQ00710Google Scholar
  17. Fukuda A, Chiba K, Maeda M, Nakamura A, Maeshima M, Tanaka Y (2004) Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley. J Exp Bot 55(397):585–594CrossRefPubMedGoogle Scholar
  18. Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought-and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci U S A 98(20):11444–11449CrossRefPubMedPubMedCentralGoogle Scholar
  19. Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255CrossRefGoogle Scholar
  20. Gordon-Weeks R, Parmar S, Davies TGE, Leigh RA (1999) Structural aspects of the effectiveness of bisphosphonates as competitive inhibitors of the plant vacuolar proton-pumping pyrophosphatase. Biochem J 337:373–377CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gutiérrez-Luna FM, Hernández-Domínguez EE, Valencia-Turcotte LG, Rodríguez-Sotres R (2018) Pyrophosphate and pyrophosphatases in plants, their involvement in stress responses and their possible relationship to secondary metabolism. Plant Sci 267:11. Epub 2017 Nov 8.CrossRefPubMedGoogle Scholar
  22. Ikeda M, Tanabe E, Rahman MH, Kadowaki H, Moritani C et al (1999) A vacuolar inorganic HC-pyrophosphatase in Acetabularia acetabulum: partial purification, characterization and molecular cloning. J Exp Bot 50:139–140Google Scholar
  23. Isayenkov S, Isner JC, Maathuis FJM (2010) Vacuolar ion channels: roles in plant nutrition and signalling. FEBS Lett 584:1982–1988CrossRefPubMedGoogle Scholar
  24. Jeschke WD (1984) K+-Na+ exchange at cellular membranes, intracellular compartmentation of cations, and salt tolerance. Sanity tolerance in plant. Strategies for crop improvement. Wiley-Interscience Publication, New York, pp 33–76Google Scholar
  25. Johansson I, Larsson C, Ek B, Kjellbom P (1996) The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca+ and apoplastic water potential. Plant Cell 8:1181–1191PubMedPubMedCentralGoogle Scholar
  26. Kim Y, Kim EJ, Rea PA (1994a) Isolation and characterization of cDNAs encoding the vacuolar HC-pyrophosphatase of Beta vulgaris. Plant Physiol 106:375–382CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kim Y, Kim EJ, Rea PA (1994b) Isolation and characterization of cDNAs encoding the vacuolar H+-pyrophosphatase of Beta vulgaris. Plant Physiol 106(1):375–382CrossRefPubMedPubMedCentralGoogle Scholar
  28. King LS, Kozono D, Agre P (2004) From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol 5:678–698CrossRefGoogle Scholar
  29. Kranewitter W, Gogarten P, Pfeiffer W (2002) Cloning and sequencing of the vacuolar proton-pumping PPase from Chenopodium rubrum. Direct submission to NCBI with accession no. AAM97920Google Scholar
  30. Lerchl J, K¨onig S, Zrenner R, Sonnewald U (1995) Molecular cloning, characterization and expression analysis of isoforms encoding tonoplast-bound protontranslocating inorganic pyrophosphatase in tobacco. Plant Mol Biol 29:833–840CrossRefPubMedGoogle Scholar
  31. Li Z, Baldwin CM, Hu Q, Liu HB, Luo H (2010) Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.). Plant Cell Environ 33(2):272–289CrossRefPubMedGoogle Scholar
  32. Lin CH, Peng PH, Ko CY, Markhart AH, Lin TY (2012) Characterization of a novel Y2 K-type dehydrin VrDhn1 from Vigna radiata. Plant Cell Physiol 53:930–942CrossRefPubMedGoogle Scholar
  33. Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496(7443):87CrossRefPubMedGoogle Scholar
  34. Liu L, Wang Y, Wang N, Dong YY, Fan XD, Liu XM, Li HY (2011) Cloning of a vacuolar H+-pyrophosphatase gene from the halophyte Suaeda corniculata whose heterologous overexpression improves salt, saline-alkali and drought tolerance in Arabidopsis. J Integr Plant Biol 53(9):731–742PubMedGoogle Scholar
  35. Lv S, Jiang P, Chen X, Fan P, Wang X, Li Y (2012) Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea. Plant Physiol Biochem 51:47–52CrossRefPubMedGoogle Scholar
  36. Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465:37–51CrossRefPubMedGoogle Scholar
  37. Maeshima M (2001) Tonoplast transporters: organization and function. Annu Rev Plant Physiol Plant Mol Biol 52:469–497CrossRefPubMedGoogle Scholar
  38. Maeshima M, Yoshida S (1989) Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem 264:20068–20073PubMedGoogle Scholar
  39. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: An overview. Arch Biochem Biophys 444:139–158CrossRefGoogle Scholar
  40. Maruyama C, Tanaka Y, Mitsuda NT, Takeyasu K, Yoshida M, Sato MH (1998) Structural studies of the vacuolar H+-pyrophosphatase: sequence analysis and identification of the residues modified by fluorescent cyclohexylcarbodiimide and maleimide. Plant Cell Physiol 39:1045–1053CrossRefPubMedGoogle Scholar
  41. Meng L, Li S, Guo J, Guo Q, Mao P, Tian X (2017) Molecular cloning and functional characterisation of an H+-pyrophosphatase from Iris lactea. Sci Rep 7(1):17779CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mimura H, Nakanishi Y, Hirono M, Maeshima M (2004) Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis. J Biol Chem 279(33):35106–35112CrossRefPubMedGoogle Scholar
  43. Mohammed SA, Nishio S, Takahashi H, Shiratake K, Ikeda H, Kanahama K, Kanayama Y (2012) Role of vacuolar H+-inorganic pyrophosphatase in tomato fruit development. J Exp Bot 63(15):5613–5621CrossRefPubMedPubMedCentralGoogle Scholar
  44. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nakanishi Y, Maeshima M (1998) Molecular cloning of vacuolar H+-pyrophosphatase and its developmental expression in growing hypocotyl of mung bean. Plant Physiol 116:589–597CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nakanishi Y, Matsuda N, Aizawa K, Kashiyama T, Yamamoto K et al (1999) Molecular cloning of the cDNA for vacuolar H+-pyrophosphatase from Chara corallina. Biochem Biophys Acta 1418:245–250CrossRefPubMedGoogle Scholar
  47. Ohnishi M, Yoshida K, Mimura T (2018) Analyzing the vacuolar membrane (tonoplast) proteome. In: Plant membrane proteomics. Humana Press, New York, pp 107–116CrossRefGoogle Scholar
  48. Porcel R, Gomez M, Kaldenhoff R, Ruiz-Lozano JM (2005) Impairment of NtAQP1 gene expression in tobacco plants does not affect root colonisation pattern by arbuscular mycorrhizal fungi but decreases their symbiotic efficiency under drought. Mycorrhiza 15:417–423CrossRefPubMedGoogle Scholar
  49. Rea PA, Poole RJ (1985) Proton-translocating inorganic pyrophosphatase in red beet (Beta vulgaris L.) tonoplast vesicles. Plant Physiol 77:46–52CrossRefPubMedPubMedCentralGoogle Scholar
  50. Rea PP, Poole RJ (1986) Chromatographic resolution of H+-translocating pyrophosphatase from H+-translocating ATPase of higher plant tonoplast. Plant Physiol 81:126–129CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rea PA, Poole RJ (1993) Vacuolar H+ −translocating pyrophosphatase. Annu Rev Plant Physiol Plant Mol Biol 44:157–180CrossRefGoogle Scholar
  52. Rea PA, Kim Y, Sarafian V, Poole RJ, Davies JM, Sanders D (1992) Vacuolar H+-translocating pyrophosphatase: a new category of ion translocase. Trends Biochem Sci 17(9):348–352CrossRefPubMedGoogle Scholar
  53. Rehman S, Harris PJC, Ashraf M (2005) Stress environments and their impact on crop production. Abiotic stresses: plant resistance through breeding and molecular approaches. Haworth Press, New York, pp 3–18Google Scholar
  54. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  55. Sakakibara Y, Kobayashi H, Kasamo K (1996) Isolation and characterization of cDNAs encoding vacuolar H+-pyrophosphates isoforms from rice (Oryza sativa L.). Plant Mol Biol 31:1029–1038CrossRefPubMedGoogle Scholar
  56. Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11:691–706CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sarafian V, Kim Y, Poole RJ, Rea PA (1992) Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proc Natl Acad Sci 89(5):1775–1779CrossRefPubMedGoogle Scholar
  58. Schilling RK, Tester M, Marschner P, Plett DC, Roy SJ (2017) AVP1: one protein, many roles. Trends Plant Sci 22(2):154–162CrossRefPubMedGoogle Scholar
  59. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115CrossRefGoogle Scholar
  60. Schocke L, Schink B (1998) Membrane-bound proton-translocating pyrophosphatase of syntrophus gentianae, a syntrophically benzoate-degrading fermenting bacterium. Eur J Biochem 256:589–594CrossRefPubMedGoogle Scholar
  61. Suneetha G (2015) Studies on in vitro, in planta and in silico analysis of vacuolar proton pyrophosphatase from Sorghum bicolor (SbV-PPase) and its overexpression in Cajanus cajan (unpublished doctoral thesis). GITAM University, Visakhapatnam, Andhra Pradesh, IndiaGoogle Scholar
  62. Suneetha G, Neelapu NRR, Surekha CH (2016) Plant vacuolar proton pyrophosphatases (VPPases): structure, function and mode of action. Int J Recent Sci Res Res 7(6):12148–12152Google Scholar
  63. Swanson SJ, Jones RL (1996) Gibberellic acid induces vacuolar acidification in barley aleurone. Plant Cell 8:2211–2221CrossRefPubMedPubMedCentralGoogle Scholar
  64. Takasu A, Nakanishi Y, Yamauchi T, Maeshima M (1997) Analysis of the substrate binding site and carboxyl terminal region of vacuolar H+-pyrophosphatase of mung bean with peptide antibodies. J Biochem 122:883–889CrossRefPubMedGoogle Scholar
  65. Tanaka Y, Chiba K, Maeda M, Maeshima M (1993) Molecular cloning of cDNA for vacuolar membrane proton-translocating inorganic pyrophosphatase in Hordeum vulgare. Biochem Biophys Res Commun 190:1110–1114CrossRefPubMedGoogle Scholar
  66. Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438CrossRefGoogle Scholar
  67. Venter M, Groenewald JH, Botha FC (2006) Sequence analysis and transcriptional profiling of two vacuolar H+-pyrophosphatase isoforms in Vitis vinifera. J Plant Res 119(5):469–478CrossRefPubMedGoogle Scholar
  68. Wei Q, Guo YJ, Cao H, Kuai BK (2011) Cloning and characterization of an AtNHX2-like Na+/H+ antiporter gene from Ammopiptanthus mongolicus (Leguminosae) and its ectopic expression enhanced drought and salt tolerance in Arabidopsis thaliana. Plant Cell Tissue Organ Cult 105(3):309–316CrossRefGoogle Scholar
  69. Yao M, Zeng Y, Liu L, Huang Y, Zhanq F (2012) Overexpression of the halophyte Kalidium Foliatum H+-pyrophosphatase gene confers salt and drought tolerance in Arabidopsis thaliana. Mol Biol Rep 39(8):7989–7996CrossRefPubMedGoogle Scholar
  70. Yeo AR (1999) Predicting the interaction between the effects of salinity and climate change on crop plants. Sci Hortic 78:159–174CrossRefGoogle Scholar
  71. Yeo AR, Flowers TJ (1986) The physiology of salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Aust J Plant Physiol 13:75–91Google Scholar
  72. Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KF, Gouzy J, Schoof H, Van de Peer Y (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480(7378):520CrossRefPubMedPubMedCentralGoogle Scholar
  73. Zhen RG, Baykov AA, Bakuleva NP, Rea PA (1994) Aminomethylenediphosphonate: a potent type-specific inhibitor of both plant and phototrophic bacterial H+-pyrophosphatases. Plant Physiol 104:153–159CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhen RG, Kim EJ, Rea PA (1997) Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N, N′-dicyclohexylcarbodiimide. J Biol Chem 272:22340–22348CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nageswara Rao Reddy Neelapu
    • 1
  • Sandeep Solmon Kusuma
    • 1
  • Titash Dutta
    • 1
  • Challa Surekha
    • 1
    Email author
  1. 1.Department of Biochemistry and Bioinformatics, Institute of ScienceGandhi Institute of Technology and Management (GITAM) Deemed to be UniversityVisakhapatnamIndia

Personalised recommendations