Advertisement

Proteoinformatics and Agricultural Biotechnology Research: Applications and Challenges

  • Jameel R. Al-ObaidiEmail author
Chapter

Abstract

Proteomics technique applications have been rapidly increased for analyses of crop plants within the last 10 years. Although proteomic techniques are regularly used in plant research, bioinformatics is considered a relatively new field of biosciences yet is making progress in every field of biotechnology very rapidly. As it has its applications in the medical field by providing the genetic and proteomic information of various organisms, similarly the field of agriculture has also taken advantage of this field because microorganisms, plants, and their interaction play an important role in agriculture, and bioinformatics helps to provide and analyze the multi-“omics” information of these organisms. The genome sequencing, proteome database of the agriculturally related organism has also provided benefits to agriculture. The improvement of several cutting-edge tools for biology, statistics, and computer science are connecting protein-related research to other “omics,” and functional biology data are further initial new approaches for crop cultivation improvement studies via the plant signaling, regulatory hormones cross-talk essential in agricultural research. This chapter aims to highlight many applications of proteomic-related bioinformatic tools in agriculture in view of trait improvement, disease control and plant disease management, nutritional content, high-performance bioinformatic facilities in agriculture, and various bioinformatics software programs/database important for biotechnologists and pathologists as well as breeders. Moreover, the elaboration of the database, algorithms, and software development that have been implemented to overcome the difficulties of the protein analysis without the database containing molecular information is discussed.

Keywords

Proteoinformatics Agricultural proteomics Computational biology 

References

  1. Acton QA (2013) Issues in bioengineering and bioinformatics: 2013 Edition. ScholarlyEditions, AtlantaGoogle Scholar
  2. Afzal AJ, Natarajan A, Saini N, Iqbal MJ, Geisler M, El Shemy HA, Mungur R, Willmitzer L, Lightfoot DA (2009) The nematode resistance allele at the rhg1 locus alters the proteome and primary metabolism of soybean roots. Plant Physiol 151(3):1264CrossRefPubMedPubMedCentralGoogle Scholar
  3. Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P (2011) Plant organelle proteomics: collaborating for optimal cell function. Mass Spectrom Rev 30(5):772–853PubMedGoogle Scholar
  4. Ahmad P, Latef AAA, Rasool S, Akram NA, Ashraf M, Gucel S (2016) Role of proteomics in crop stress tolerance. Front Plant Sci 7:1336PubMedPubMedCentralGoogle Scholar
  5. Alexander MM, Cilia M (2016) A molecular tug-of-war: global plant proteome changes during viral infection. Curr Plant Biol 5(Supplement C):13–24.  https://doi.org/10.1016/j.cpb.2015.10.003CrossRefGoogle Scholar
  6. Allahverdiyeva Y, Battchikova N, Brosché M, Fujii H, Kangasjärvi S, Mulo P, Mähönen AP, Nieminen K, Overmyer K, Salojärvi J (2015) Integration of photosynthesis, development and stress as an opportunity for plant biology. New Phytol 208(3):647–655CrossRefPubMedGoogle Scholar
  7. Al-Obaidi RJ, Mohd-Yusuf Y, Razali N, Jayapalan JJ, Tey C-C, Md-Noh N, Junit MS, Othman YR, Hashim HO (2014) Identification of proteins of altered abundance in oil palm infected with Ganoderma boninense. Int J Mol Sci 15(3):5175.  https://doi.org/10.3390/ijms15035175CrossRefPubMedPubMedCentralGoogle Scholar
  8. Al-Obaidi J, Saidi N, Usuldin S, Rahmad N, Zean NB, Idris A (2016a) Differential proteomic study of oil palm leaves in response to in vitro inoculation with pathogenic and non-pathogenic Ganoderma spp. J Plant Pathol 98(2):235–244Google Scholar
  9. Al-Obaidi JR (2016b) Proteomics of edible mushrooms: a mini-review. Electrophoresis 37(10):1257–1263.  https://doi.org/10.1002/elps.201600031CrossRefPubMedGoogle Scholar
  10. Armengaud J, Trapp J, Pible O, Geffard O, Chaumot A, Hartmann EM (2014) Non-model organisms, a species endangered by proteogenomics. J Proteomics 105:5–18CrossRefPubMedGoogle Scholar
  11. Ashok NR, Aparna HS (2017) Empirical and bioinformatic characterization of buffalo (Bubalus bubalis) colostrum whey peptides & their angiotensin I-converting enzyme inhibition. Food Chem 228(Supplement C):582–594.  https://doi.org/10.1016/j.foodchem.2017.02.032CrossRefPubMedGoogle Scholar
  12. Assumpcao TI, Fontes W, Sousa MV, Ricart CAO (2005) Proteome analysis of nelore bull (Bos taurus indicus) seminal plasma. Protein Pept Lett 12(8):813–817.  https://doi.org/10.2174/0929866054864292CrossRefPubMedGoogle Scholar
  13. Attwood TK, Coletta A, Muirhead G, Pavlopoulou A, Philippou PB, Popov I, Romá-Mateo C, Theodosiou A, Mitchell AL (2012) The PRINTS database: a fine-grained protein sequence annotation and analysis resource—its status in 2012. Database 2012:bas019–bas019.  https://doi.org/10.1093/database/bas019CrossRefPubMedPubMedCentralGoogle Scholar
  14. Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, Wishart DS (2016) Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res 44(Web Server issue):W147–W153.  https://doi.org/10.1093/nar/gkw419CrossRefPubMedPubMedCentralGoogle Scholar
  15. Babujee L, Wurtz V, Ma C, Lueder F, Soni P, Van Dorsselaer A, Reumann S (2010) The proteome map of spinach leaf peroxisomes indicates partial compartmentalization of phylloquinone (vitamin K1) biosynthesis in plant peroxisomes. J Exp Bot 61(5):1441–1453CrossRefPubMedGoogle Scholar
  16. Balmant KM, Parker J, Yoo M-J, Zhu N, Dufresne C, Chen S (2015) Redox proteomics of tomato in response to Pseudomonas syringae infection. Hortic Res 2:15043.  https://doi.org/10.1038/hortres.2015. 43. https://www.nature.com/articles/hortres201543#supplementary-informationCrossRefPubMedPubMedCentralGoogle Scholar
  17. Barah P, Bones AM (2014) Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology. J Exp Bot 66(2):479–493CrossRefPubMedGoogle Scholar
  18. Bartlett A, Lewis J, Williams ML (2016) Generations of interdisciplinarity in bioinformatics. New Genet Soc 35(2):186–209.  https://doi.org/10.1080/14636778.2016.1184965CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bengtsson T, Weighill D, Proux-Wéra E, Levander F, Resjö S, Burra DD, Moushib LI, Hedley PE, Liljeroth E, Jacobson D, Alexandersson E, Andreasson E (2014) Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach. BMC Genomics 15(1):315.  https://doi.org/10.1186/1471-2164-15-315CrossRefPubMedPubMedCentralGoogle Scholar
  20. Benton D (1996) Bioinformatics — principles and potential of a new multidisciplinary tool. Trends Biotechnol 14(8):261–272.  https://doi.org/10.1016/0167-7799(96)10037-8CrossRefPubMedGoogle Scholar
  21. Bern M, Kil YJ, Becker C (2002) Byonic: advanced peptide and protein identification software. In: Current protocols in bioinformatics. Wiley  https://doi.org/10.1002/0471250953.bi1320s40
  22. Bessarabova M, Ishkin A, JeBailey L, Nikolskaya T, Nikolsky Y (2012) Knowledge-based analysis of proteomics data. BMC Bioinforma 13(16):S13.  https://doi.org/10.1186/1471-2105-13-s16-s13CrossRefGoogle Scholar
  23. Bhadauria V (2016) Omics in plant disease resistance. Caister Academic Press, NorwichGoogle Scholar
  24. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(W1):W252–W258.  https://doi.org/10.1093/nar/gku340CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bischoff R, Permentier H, Guryev V, Horvatovich P (2016) Genomic variability and protein species—improving sequence coverage for proteogenomics. J Proteomics 134:25–36CrossRefPubMedGoogle Scholar
  26. Blakeley P, Wright JC, Hubbard SJ, Jones AR (2011) Bioinformatics in animal proteomics. In: Methods in animal proteomics, Wiley-Blackwell, pp 103–119.  https://doi.org/10.1002/9780470960660.ch5CrossRefGoogle Scholar
  27. Bolger ME, Weisshaar B, Scholz U, Stein N, Usadel B, Mayer KFX (2014) Plant genome sequencing—applications for crop improvement. Curr Opin Biotechnol 26(Supplement C):31–37.  https://doi.org/10.1016/j.copbio.2013.08.019CrossRefPubMedGoogle Scholar
  28. Bruhn R, Jennings SF (2007) A multidisciplinary bioinformatics minor. ACM SIGCSE Bull 39(1):348–352CrossRefGoogle Scholar
  29. Burgess S (2004) Proteomics in the chicken: tools for understanding immune responses to avian diseases. Poult Sci 83(4):552–573CrossRefPubMedGoogle Scholar
  30. Cai-xia Z, Yi T, Li-yi Z, Ze-ran Z, Pei-hua C (2017) Comparative proteomic analysis of apple branches susceptible and resistant to ring rot disease. Eur J Plant Pathol 148(2):329–341.  https://doi.org/10.1007/s10658-016-1092-6CrossRefGoogle Scholar
  31. Calderone A, Cesareni G (2012) mentha: the interactome browser. 2012 18.  https://doi.org/10.14806/ej.18.A.455 p. 128CrossRefGoogle Scholar
  32. Canovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock HP, Rossignol M (2004) Plant proteome analysis. Proteomics 4(2):285–298CrossRefPubMedGoogle Scholar
  33. Cantú MD, Mariano AG, Palma MS, Carrilho E, Wulff NA (2008) Proteomic analysis reveals suppression of bark chitinases and proteinase inhibitors in citrus plants affected by the citrus sudden death disease. Phytopathology 98(10):1084–1092.  https://doi.org/10.1094/PHYTO-98-10-1084CrossRefPubMedGoogle Scholar
  34. Carpentier SC, Panis B, Vertommen A, Swennen R, Sergeant K, Renaut J, Laukens K, Witters E, Samyn B, Devreese B (2008) Proteome analysis of non-model plants: a challenging but powerful approach. Mass Spectrom Rev 27(4):354–377CrossRefPubMedGoogle Scholar
  35. Chandramouli K, Qian P-Y (2009) Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genomics Proteomics 2009:239204.  https://doi.org/10.4061/2009/239204CrossRefPubMedPubMedCentralGoogle Scholar
  36. Chang J-W, Zhou Y-Q, Ul Qamar TM, Chen L-L, Ding Y-D (2016) Prediction of protein–protein interactions by Evidence Combining Methods. Int J Mol Sci 17(11).  https://doi.org/10.3390/ijms17111946CrossRefPubMedCentralGoogle Scholar
  37. Chatr-aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, O’Donnell L, Oster S, Theesfeld C, Sellam A, Stark C, Breitkreutz B-J, Dolinski K, Tyers M (2017) The BioGRID interaction database: 2017 update. Nucleic Acids Res 45(Database issue):D369–D379.  https://doi.org/10.1093/nar/gkw1102CrossRefPubMedGoogle Scholar
  38. Chen C, McGarvey PB, Huang H, Wu CH (2010) Protein bioinformatics infrastructure for the integration and analysis of multiple high-throughput “omics” data. Adv Bioinforma 2010:423589.  https://doi.org/10.1155/2010/423589CrossRefGoogle Scholar
  39. Chen J, Chen L, Shen B (2013) Identification of network biomarkers for cancer diagnosis. In: Wang X (ed) Bioinformatics of human proteomics. Springer Netherlands, Dordrecht, pp 257–275.  https://doi.org/10.1007/978-94-007-5811-7_11CrossRefGoogle Scholar
  40. Chen L, Gong Y, Cai Y, Liu W, Zhou Y, Xiao Y, Xu Z, Liu Y, Lei X, Wang G, Guo M, Ma X, Bian Y (2016) Genome sequence of the edible cultivated mushroom lentinula edodes (Shiitake) reveals insights into lignocellulose degradation. PLoS One 11(8):e0160336.  https://doi.org/10.1371/journal.pone.0160336CrossRefPubMedPubMedCentralGoogle Scholar
  41. Cho WCS (2007) Proteomics technologies and challenges. Genomics Proteomics Bioinformatics 5(2):77–85.  https://doi.org/10.1016/S1672-0229(07)60018-7CrossRefPubMedPubMedCentralGoogle Scholar
  42. Chu X-L, Feng M-G, Ying S-H (2016) Qualitative ubiquitome unveils the potential significances of protein lysine ubiquitination in hyphal growth of Aspergillus nidulans. Curr Genet 62(1):191–201.  https://doi.org/10.1007/s00294-015-0517-7CrossRefPubMedGoogle Scholar
  43. Cipriano AKAL, Gondim DMF, Vasconcelos IM, Martins JAM, Moura AA, Moreno FB, Monteiro-Moreira ACO, Melo JGM, Cardoso JE, Paiva ALS, Oliveira JTA (2015) Proteomic analysis of responsive stem proteins of resistant and susceptible cashew plants after Lasiodiplodia theobromae infection. J Proteomics 113:90–109.  https://doi.org/10.1016/j.jprot.2014.09.022CrossRefPubMedGoogle Scholar
  44. Clark GW, Dar V-u-N, Bezginov A, Yang JM, Charlebois RL, Tillier ERM (2011) Using coevolution to predict protein–protein interactions. In: Cagney G, Emili A (eds) Network biology: methods and applications. Humana Press, Totowa, pp 237–256.  https://doi.org/10.1007/978-1-61779-276-2_11CrossRefGoogle Scholar
  45. Collins FS, Green ED, Guttmacher AE, Guyer MS (2003) A vision for the future of genomics research. Nature 422(6934):835–847CrossRefPubMedGoogle Scholar
  46. Cooper B, Campbell KB, Feng J, Garrett WM, Frederick R (2011) Nuclear proteomic changes linked to soybean rust resistance. Mol BioSystems 7(3):773–783CrossRefGoogle Scholar
  47. Cottrell J (2005) Database searching for protein identification and characterizationGoogle Scholar
  48. Coumans JV, Poljak A, Raftery MJ, Backhouse D, Pereg-Gerk L (2009) Analysis of cotton (Gossypium hirsutum) root proteomes during a compatible interaction with the black root rot fungus Thielaviopsis basicola. Proteomics 9(2):335–349CrossRefPubMedGoogle Scholar
  49. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805.  https://doi.org/10.1021/pr101065jCrossRefPubMedPubMedCentralGoogle Scholar
  50. Cristoni S, Mazzuca S (2011) Bioinformatics applied to proteomics. In: Systems and computational biology-bioinformatics and computational modeling. IntechOpen Limited, LondonGoogle Scholar
  51. Dahal D, Pich A, Braun HP, Wydra K (2010) Analysis of cell wall proteins regulated in stem of susceptible and resistant tomato species after inoculation with Ralstonia solanacearum: a proteomic approach. Plant Mol Biol 73(6):643–658.  https://doi.org/10.1007/s11103-010-9646-zCrossRefPubMedPubMedCentralGoogle Scholar
  52. Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411(6839):826–833CrossRefPubMedGoogle Scholar
  53. Dennis ES, Ellis J, Green A, Llewellyn D, Morell M, Tabe L, Peacock WJ (2008) Genetic contributions to agricultural sustainability. Philos Trans R Soc B: Biol Sci 363(1491):591–609.  https://doi.org/10.1098/rstb.2007.2172CrossRefGoogle Scholar
  54. Di Carli M, Villani ME, Bianco L, Lombardi R, Perrotta G, Benvenuto E, Donini M (2010) Proteomic analysis of the plant−virus interaction in Cucumber Mosaic Virus (CMV) resistant transgenic tomato. J Proteome Res 9(11):5684–5697.  https://doi.org/10.1021/pr100487xCrossRefPubMedGoogle Scholar
  55. Disruption ahead for NCBI databases (2016) Matrix science. http://www.matrixscience.com/blog/disruption-ahead-for-ncbi-databases.html. Accessed 20 Oct 2017
  56. Doblas VG, Smakowska-Luzan E, Fujita S, Alassimone J, Barberon M, Madalinski M, Belkhadir Y, Geldner N (2017) Root diffusion barrier control by a vasculature-derived peptide binding to the SGN3 receptor. Science 355(6322):280CrossRefPubMedGoogle Scholar
  57. Ekblom R, Wolf JBW (2014) A field guide to whole-genome sequencing, assembly and annotation. Evol Appl 7(9):1026–1042.  https://doi.org/10.1111/eva.12178CrossRefPubMedPubMedCentralGoogle Scholar
  58. Elvira MI, Galdeano MM, Gilardi P, García-Luque I, Serra MT (2008) Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of pepper mild mottle virus (PMMoV) in Capsicum chinense L3 plants. J Exp Bot 59(6):1253–1265.  https://doi.org/10.1093/jxb/ern032CrossRefPubMedGoogle Scholar
  59. Fang X, Jost R, Finnegan PM, Barbetti MJ (2013) Comparative proteome analysis of the strawberry-fusarium oxysporum f. sp. fragariae pathosystem reveals early activation of defense responses as a crucial determinant of host resistance. J Proteome Res 12(4):1772–1788CrossRefPubMedGoogle Scholar
  60. Fears R (2007) Commission on genetic resources for food and agricultureGoogle Scholar
  61. Fen W, Baoxing S, Xing Z, Yaotian M, Dengyun L, Na Z, Pengfei J, Qing S, Jingfei H, Deli Z (2016) Prediction and analysis of the protein-protein interaction networks for chickens, cattle, dogs, horses and rabbits. Curr Bioinform 11(1):131–142.  https://doi.org/10.2174/1574893611666151203221255CrossRefGoogle Scholar
  62. Fernandez NF, Gundersen GW, Rahman A, Grimes ML, Rikova K, Hornbeck P, Ma’ayan A (2017) Clustergrammer, a web-based heatmap visualization and analysis tool for high-dimensional biological data. Sci Data 4:170151.  https://doi.org/10.1038/sdata.2017.151. https://www.nature.com/articles/sdata2017151#supplementary-informationCrossRefPubMedPubMedCentralGoogle Scholar
  63. Fernández-Acero FJ, Colby T, Harzen A, Cantoral JM, Schmidt J (2009) Proteomic analysis of the phytopathogenic fungus Botrytis cinerea during cellulose degradation. Proteomics 9(10):2892–2902CrossRefPubMedGoogle Scholar
  64. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285.  https://doi.org/10.1093/nar/gkv1344CrossRefGoogle Scholar
  65. Fletcher J, Bender C, Budowle B, Cobb WT, Gold SE, Ishimaru CA, Luster D, Melcher U, Murch R, Scherm H, Seem RC, Sherwood JL, Sobral BW, Tolin SA (2006) Plant pathogen forensics: capabilities, needs, and recommendations. Microbiol Mol Biol Rev 70(2):450–471.  https://doi.org/10.1128/MMBR.00022-05CrossRefPubMedPubMedCentralGoogle Scholar
  66. Fondi M, Liò P (2015) Multi -omics and metabolic modelling pipelines: challenges and tools for systems microbiology. Microbiol Res 171(Supplement C):52–64.  https://doi.org/10.1016/j.micres.2015.01.003CrossRefPubMedGoogle Scholar
  67. Fu Y, Dai Y, Yang C, Wei P, Song B, Yang Y, Sun L, Zhang Z-W, Li Y (2017) Comparative transcriptome analysis identified candidate genes related to Bailinggu mushroom formation and genetic markers for genetic analyses and breeding. Sci Rep 7:9266.  https://doi.org/10.1038/s41598-017-08049-zCrossRefPubMedPubMedCentralGoogle Scholar
  68. Garg H, Li H, Sivasithamparam K, Barbetti MJ (2013) Differentially expressed proteins and associated histological and disease progression changes in cotyledon tissue of a resistant and susceptible genotype of Brassica napus infected with Sclerotinia sclerotiorum. PLoS One 8(6):e65205.  https://doi.org/10.1371/journal.pone.0065205CrossRefPubMedPubMedCentralGoogle Scholar
  69. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31(13):3784–3788CrossRefPubMedPubMedCentralGoogle Scholar
  70. Goldansaz SA, Guo AC, Sajed T, Steele MA, Plastow GS, Wishart DS (2017) Livestock metabolomics and the livestock metabolome: a systematic review. PLoS One 12(5):e0177675CrossRefPubMedPubMedCentralGoogle Scholar
  71. Gómez-Vidal S, Salinas J, Tena M, Lopez-Llorca LV (2009) Proteomic analysis of date palm (Phoenix dactylifera L.) responses to endophytic colonization by entomopathogenic fungi. Electrophoresis 30(17):2996–3005.  https://doi.org/10.1002/elps.200900192CrossRefPubMedGoogle Scholar
  72. Gong F, Hu X, Wang W (2015) Proteomic analysis of crop plants under abiotic stress conditions: where to focus our research? Front Plant Sci 6:418PubMedPubMedCentralGoogle Scholar
  73. Gore S, Sanz García E, Hendrickx PMS, Gutmanas A, Westbrook JD, Yang H, Feng Z, Baskaran K, Berrisford JM, Hudson BP, Ikegawa Y, Kobayashi N, Lawson CL, Mading S, Mak L, Mukhopadhyay A, Oldfield TJ, Patwardhan A, Peisach E, Sahni G, Sekharan MR, Sen S, Shao C, Smart OS, Ulrich EL, Yamashita R, Quesada M, Young JY, Nakamura H, Markley JL, Berman HM, Burley SK, Velankar S, Kleywegt GJ (2017) Validation of structures in the protein data bank. Structure 25(12):1916–1927.  https://doi.org/10.1016/j.str.2017.10.009CrossRefPubMedPubMedCentralGoogle Scholar
  74. Gu H, Zhu P, Jiao Y, Meng Y, Chen M (2011) PRIN: a predicted rice interactome network. BMC Bioinforma 12(1):161CrossRefGoogle Scholar
  75. Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32(18):2847–2849.  https://doi.org/10.1093/bioinformatics/btw313CrossRefPubMedGoogle Scholar
  76. Guijun D, Weidong P, Gongshe L (2006) The analysis of proteome changes in sunflower seeds induced by N+ implantation. J Biosci (Bangalore) 31(2):247–253.  https://doi.org/10.1007/BF02703917CrossRefGoogle Scholar
  77. Gupta N, Tanner S, Jaitly N, Adkins JN, Lipton M, Edwards R, Romine M, Osterman A, Bafna V, Smith RD, Pevzner PA (2007) Whole proteome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation. Genome Res 17(9):1362–1377.  https://doi.org/10.1101/gr.6427907CrossRefPubMedPubMedCentralGoogle Scholar
  78. Hamady M, Tom Hiu Tung C, Resing K, Cios KJ, Knight R (2005) Key challenges in proteomics and proteoinformatics. IEEE Eng Med Biol Mag 24(3):34–40.  https://doi.org/10.1109/MEMB.2005.1436456CrossRefPubMedGoogle Scholar
  79. Hily JM, García A, Moreno A, Plaza M, Wilkinson MD, Fereres A, Fraile A, García-Arenal F (2014) The relationship between host lifespan and pathogen reservoir potential: an analysis in the system Arabidopsis thaliana-cucumber mosaic virus. PLoS Pathog 10(11):e1004492.  https://doi.org/10.1371/journal.ppat.1004492CrossRefPubMedPubMedCentralGoogle Scholar
  80. Hoogland C, Mostaguir K, Sanchez J-C, Hochstrasser DF, Appel RD (2007) 2D PAGE databases for proteins in human body fluids. In: Thongboonkerd V (ed) Proteomics of human body fluids: principles, methods, and applications. Humana Press, Totowa, pp 137–146.  https://doi.org/10.1007/978-1-59745-432-2_7CrossRefGoogle Scholar
  81. Hosur R, Peng J, Vinayagam A, Stelzl U, Xu J, Perrimon N, Bienkowska J, Berger B (2012) A computational framework for boosting confidence in high-throughput protein-protein interaction datasets. Genome Biol 13(8):R76.  https://doi.org/10.1186/gb-2012-13-8-r76CrossRefPubMedPubMedCentralGoogle Scholar
  82. Hu J, Rampitsch C, Bykova NV (2015) Advances in plant proteomics toward improvement of crop productivity and stress resistancex. Front Plant Sci 6:209.  https://doi.org/10.3389/fpls.2015.00209CrossRefPubMedPubMedCentralGoogle Scholar
  83. Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, de Castro E, Lachaize C, Langendijk-Genevaux PS, Sigrist CJA (2008) The 20 years of PROSITE. Nucleic Acids Res 36(Database issue):D245–D249.  https://doi.org/10.1093/nar/gkm977CrossRefPubMedGoogle Scholar
  84. Hutchins JRA (2014) What’s that gene (or protein)? Online resources for exploring functions of genes, transcripts, and proteins. Mol Biol Cell 25(8):1187–1201.  https://doi.org/10.1091/mbc.E13-10-0602CrossRefPubMedPubMedCentralGoogle Scholar
  85. Ignatchenko A, Sinha A, Alfaro JA, Boutros PC, Kislinger T, Ignatchenko V (2017) Detecting protein variants by mass spectrometry: a comprehensive study in cancer cell-lines. Genome Med 9(1):62CrossRefPubMedPubMedCentralGoogle Scholar
  86. Imam J, Nitin M, Toppo NN, Mandal NP, Kumar Y, Variar M, Bandopadhyay R, Shukla P (2014) A comprehensive overview on application of bioinformatics and computational statistics in rice genomics toward an Amalgamated approach for improving acquaintance base. In: Kishor PBK, Bandopadhyay R, Suravajhala P (eds) Agricultural bioinformatics. Springer India, New Delhi, pp 89–107.  https://doi.org/10.1007/978-81-322-1880-7_5CrossRefGoogle Scholar
  87. Jayaswal PK, Dogra V, Shanker A, Sharma TR, Singh NK (2017) A tree of life based on ninety-eight expressed genes conserved across diverse eukaryotic species. PLoS One 12(9):e0184276.  https://doi.org/10.1371/journal.pone.0184276CrossRefPubMedPubMedCentralGoogle Scholar
  88. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40(D1):D109–D114.  https://doi.org/10.1093/nar/gkr988CrossRefGoogle Scholar
  89. Kang Y, Burton L, Lau A, Tate S (2017) SWATH-ID: an instrument method which combines identification and quantification in a single analysis. Proteomics 17(10):1500522-n/a.  https://doi.org/10.1002/pmic.201500522CrossRefGoogle Scholar
  90. Katam K, Jones KA, Sakata K (2015a) Advances in proteomics and bioinformatics in agriculture research and crop improvement. J Proteomics Bioinforma 8(3):39Google Scholar
  91. Katam R, Chibanguza K, Latinwo LM, Smith D (2015b) Proteome biomarkers in xylem reveal Pierce’s disease tolerance in grape. J Proteomics Bioinforma 8(9):217–224Google Scholar
  92. Kaul S, Koo HL, Jenkins J, Rizzo M, Rooney T, Tallon LJ, Feldblyum T, Nierman W, Benito MI, Lin X (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815CrossRefGoogle Scholar
  93. Kaur P, Jost R, Sivasithamparam K, Barbetti MJ (2011) Proteome analysis of the Albugo candida–Brassica juncea pathosystem reveals that the timing of the expression of defence-related genes is a crucial determinant of pathogenesis. J Exp Bot 62(3):1285–1298.  https://doi.org/10.1093/jxb/erq365CrossRefPubMedPubMedCentralGoogle Scholar
  94. Ke T, Yu J, Dong C, Mao H, Hua W, Liu S (2015) ocsESTdb: a database of oil crop seed EST sequences for comparative analysis and investigation of a global metabolic network and oil accumulation metabolism. BMC Plant Biol 15(1):19.  https://doi.org/10.1186/s12870-014-0399-8CrossRefPubMedPubMedCentralGoogle Scholar
  95. Keskin O, Tuncbag N, Gursoy A (2016) Predicting protein–protein interactions from the molecular to the proteome level. Chem Rev 116(8):4884–4909CrossRefPubMedGoogle Scholar
  96. Key M (2012) A tutorial in displaying mass spectrometry-based proteomic data using heat maps. BMC Bioinform 13(Suppl 16):S10–S10.  https://doi.org/10.1186/1471-2105-13-S16-S10CrossRefGoogle Scholar
  97. Khan FA (2015) Biotechnology fundamentals, 2nd edn. CRC Press, Boca Raton, Florida, United StatesGoogle Scholar
  98. Khan AM, Tan TW, Schönbach C, Ranganathan S (2013) APBioNet—Transforming Bioinformatics in the Asia-Pacific Region. PLoS Comp Biol 9(10):e1003317.  https://doi.org/10.1371/journal.pcbi.1003317CrossRefGoogle Scholar
  99. Khan I, Chen Y, Dong T, Hong X, Takeuchi R, Mori H, Kihara D (2014) Genome-scale identification and characterization of moonlighting proteins. Biol Direct 9(1):30.  https://doi.org/10.1186/s13062-014-0030-9CrossRefPubMedPubMedCentralGoogle Scholar
  100. Khazanov NA, Carlson HA (2013) Exploring the composition of protein-ligand binding sites on a large scale. PLoS Comp Biol 9(11):e1003321.  https://doi.org/10.1371/journal.pcbi.1003321CrossRefGoogle Scholar
  101. Khoa Pham T, Wright PC (2007) Proteomic analysis of Saccharomyces cerevisiae. Expert Rev Proteomics 4(6):793–813CrossRefGoogle Scholar
  102. Koller A, Washburn MP, Lange BM, Andon NL, Deciu C, Haynes PA, Hays L, Schieltz D, Ulaszek R, Wei J, Wolters D, Yates JR (2002) Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci 99(18):11969–11974CrossRefPubMedGoogle Scholar
  103. Koltai H, Volpin H (2003) Agricultural genomics: an approach to plant protection. Eur J Plant Pathol 109(2):101–108.  https://doi.org/10.1023/A:1022512914003CrossRefGoogle Scholar
  104. Komatsu S, Mock H-P, Yang P, Svensson B (2013) Application of proteomics for improving crop protection/artificial regulation. Front Plant Sci 4:522.  https://doi.org/10.3389/fpls.2013.00522CrossRefPubMedPubMedCentralGoogle Scholar
  105. Kumar A, Pathak RK, Gupta SM, Gaur VS, Pandey D (2015) Systems biology for smart crops and agricultural innovation: filling the gaps between genotype and phenotype for complex traits linked with robust agricultural productivity and sustainability. OMICS: J Integr Biol 19(10):581–601CrossRefGoogle Scholar
  106. Land M, Hauser L, Jun S-R, Nookaew I, Leuze MR, Ahn T-H, Karpinets T, Lund O, Kora G, Wassenaar T, Poudel S, Ussery DW (2015) Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics 15(2):141–161.  https://doi.org/10.1007/s10142-015-0433-4CrossRefPubMedPubMedCentralGoogle Scholar
  107. Lande NV, Subba P, Barua P, Gayen D, Keshava Prasad TS, Chakraborty S, Chakraborty N (2017) Dissecting the chloroplast proteome of chickpea (Cicer arietinum L.) provides new insights into classical and non-classical functions. J Proteomics 165(Supplement C):11–20.  https://doi.org/10.1016/j.jprot.2017.06.005CrossRefPubMedGoogle Scholar
  108. Larson RL, Wintermantel WM, Hill A, Fortis L, Nunez A (2008) Proteome changes in sugar beet in response to Beet necrotic yellow vein virus. Physiol Mol Plant Pathol 72(1):62–72.  https://doi.org/10.1016/j.pmpp.2008.04.003CrossRefGoogle Scholar
  109. Lawrence S, Parker J, Chen S (2016) Plant response to bacterial pathogens: a proteomics view. In: Salekdeh GH (ed) Agricultural proteomics volume 2: environmental stresses. Springer International Publishing, Cham, pp 203–225.  https://doi.org/10.1007/978-3-319-43278-6_9CrossRefGoogle Scholar
  110. Lee J, Feng J, Campbell KB, Scheffler BE, Garrett WM, Thibivilliers S, Stacey G, Naiman DQ, Tucker ML, Pastor-Corrales MA, Cooper B (2009) Quantitative proteomic analysis of bean plants infected by a virulent and avirulent obligate rust fungus. Mol Cell Proteomics 8(1):19–31.  https://doi.org/10.1074/mcp.M800156-MCP200CrossRefPubMedGoogle Scholar
  111. Lei D, Lin R, Yin C, Li P, Zheng A (2014) Global protein–protein interaction network of rice sheath blight pathogen. J Proteome Res 13(7):3277–3293.  https://doi.org/10.1021/pr500069rCrossRefPubMedGoogle Scholar
  112. Lery LMS, Hemerly AS, Nogueira EM, von Krüger WMA, Bisch PM (2010) Quantitative proteomic analysis of the interaction between the endophytic plant-growth-promoting bacterium gluconacetobacter diazotrophicus and sugarcane. Mol Plant Microbe Interact 24(5):562–576.  https://doi.org/10.1094/MPMI-08-10-0178CrossRefGoogle Scholar
  113. Leung T, Poulin R (2008) Parasitism, commensalism, and mutualism: exploring the many shades of symbioses. Vie Milieu 58(2):107–115Google Scholar
  114. Li T, Gong L, Wang Y, Chen F, Gupta VK, Jian Q, Duan X, Jiang Y (2017) Proteomics analysis of Fusarium proliferatum under various initial pH during fumonisin production. J Proteomics 164(Supplement C):59–72.  https://doi.org/10.1016/j.jprot.2017.05.008CrossRefPubMedGoogle Scholar
  115. Liu W, Gray S, Huo Y, Li L, Wei T, Wang X (2015) Proteomic analysis of interaction between a plant virus and its vector insect reveals new functions of hemipteran cuticular protein. Mol Cell Proteomics: MCP 14(8):2229–2242.  https://doi.org/10.1074/mcp.M114.046763CrossRefPubMedGoogle Scholar
  116. Lodha TD, Hembram P, Nitile Tep JB (2013) Proteomics: a successful approach to understand the molecular mechanism of plant-pathogen interaction. Am J Plant Sci 04(06):15.  https://doi.org/10.4236/ajps.2013.46149CrossRefGoogle Scholar
  117. Ma B (2015) Novor: real-time peptide de novo sequencing software. J Am Soc Mass Spectrom 26(11):1885–1894.  https://doi.org/10.1007/s13361-015-1204-0CrossRefPubMedPubMedCentralGoogle Scholar
  118. Marco-Ramell A, de Almeida AM, Cristobal S, Rodrigues P, Roncada P, Bassols A (2016) Proteomics and the search for welfare and stress biomarkers in animal production in the one-health context. Mol Biosyst 12(7):2024–2035CrossRefPubMedGoogle Scholar
  119. Martens L (2011) Proteomics databases and repositories. In: Wu CH, Chen C (eds) Bioinformatics for comparative proteomics. Humana Press, Totowa, pp 213–227.  https://doi.org/10.1007/978-1-60761-977-2_14CrossRefGoogle Scholar
  120. Maurer MH (2016) Two-dimensional gel electrophoresis image analysis via dedicated software packages. In: Marengo E, Robotti E (eds) 2-D PAGE map analysis: methods and protocols. Springer New York, New York, pp 55–65.  https://doi.org/10.1007/978-1-4939-3255-9_3CrossRefGoogle Scholar
  121. McGarvey PB, Huang H, Mazumder R, Zhang J, Chen Y, Zhang C, Cammer S, Will R, Odle M, Sobral B, Moore M, Wu CH (2009) Systems integration of biodefense omics data for analysis of pathogen-host interactions and identification of potential targets. PLoS One 4(9):e7162.  https://doi.org/10.1371/journal.pone.0007162CrossRefPubMedPubMedCentralGoogle Scholar
  122. Mehta A, Brasileiro ACM, Souza DSL, Romano E, Campos MA, Grossi-de-Sá MF, Silva MS, Franco OL, Fragoso RR, Bevitori R, Rocha TL (2008) Plant–pathogen interactions: what is proteomics telling us? FEBS J 275(15):3731–3746.  https://doi.org/10.1111/j.1742-4658.2008.06528.xCrossRefPubMedGoogle Scholar
  123. Memišević V, Zavaljevski N, Pieper R, Rajagopala SV, Kwon K, Townsend K, Yu C, Yu X, DeShazer D, Reifman J, Wallqvist A (2013) Novel Burkholderia mallei virulence factors linked to specific host-pathogen protein interactions. Mol Cell Proteomics : MCP 12(11):3036–3051.  https://doi.org/10.1074/mcp.M113.029041CrossRefPubMedGoogle Scholar
  124. Merrill SA, Mazza A-M, Council NR (2006) Genomics, proteomics, and the changing research environmentGoogle Scholar
  125. Mirzaei M, Wu Y, Handler D, Maher T, Pascovici D, Ravishankar P, Moghaddam MZ, Haynes PA, Salekdeh GH, Chick JM (2016) Applications of quantitative proteomics in plant research. In: Agricultural proteomics volume 1. Springer, Switzerland. pp 1–29Google Scholar
  126. Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51(4):497–523.  https://doi.org/10.1093/pcp/pcq027CrossRefPubMedPubMedCentralGoogle Scholar
  127. Mochida K, Shinozaki K (2011) Advances in omics and bioinformatics tools for systems analyses of plant functions. Plant Cell Physiol 52(12):2017–2038.  https://doi.org/10.1093/pcp/pcr153CrossRefPubMedPubMedCentralGoogle Scholar
  128. Moorthie S, Hall A, Wright CF (2013) Informatics and clinical genome sequencing: opening the black box. Genet Med 15(3):165–171CrossRefPubMedGoogle Scholar
  129. Nesvizhskii AI (2014) Proteogenomics: concepts, applications, and computational strategies. Nat Methods 11(11):1114–1125.  https://doi.org/10.1038/nmeth.3144CrossRefPubMedPubMedCentralGoogle Scholar
  130. Newell-McGloughlin M (2008) Nutritionally improved agricultural crops. Plant Physiol 147(3):939–953.  https://doi.org/10.1104/pp.108.121947CrossRefPubMedPubMedCentralGoogle Scholar
  131. Nilsson T, Mann M, Aebersold R, Yates JR, Bairoch A, Bergeron JJM (2010) Mass spectrometry in high-throughput proteomics: ready for the big time. Nat Methods 7(9):681–685CrossRefPubMedGoogle Scholar
  132. Novák J, Lemr K, Schug KA, Havlíček V (2015) CycloBranch: de novo sequencing of nonribosomal peptides from accurate product ion mass spectra. J Am Soc Mass Spectrom 26(10):1780–1786.  https://doi.org/10.1007/s13361-015-1211-1CrossRefPubMedGoogle Scholar
  133. Ong Q, Nguyen P, Phuong Thao N, Le L (2016) Bioinformatics approach in plant genomic research. Curr Genomics 17(4):368–378CrossRefPubMedPubMedCentralGoogle Scholar
  134. Orgogozo V, Morizot B, Martin A (2015) The differential view of genotype–phenotype relationships. Front Genet 6:179.  https://doi.org/10.3389/fgene.2015.00179CrossRefPubMedPubMedCentralGoogle Scholar
  135. Ortea I, O’Connor G, Maquet A (2016) Review on proteomics for food authentication. J Proteomics 147:212–225CrossRefPubMedGoogle Scholar
  136. Padula PM, Berry JI, O’Rourke BM, Raymond BB, Santos J, Djordjevic SP (2017) A comprehensive guide for performing sample preparation and top-down protein analysis. Proteomes 5(2):11.  https://doi.org/10.3390/proteomes5020011CrossRefPubMedCentralPubMedGoogle Scholar
  137. Pandohee J, Stevenson PG, Conlan XA, Zhou X-R, Jones OAH (2015) Off-line two-dimensional liquid chromatography for metabolomics: an example using Agaricus bisporus mushrooms exposed to UV irradiation. Metabolomics 11 (4):939–951.  https://doi.org/10.1007/s11306-014-0749-4CrossRefGoogle Scholar
  138. Park S, Gupta R, Krishna R, Kim ST, Lee DY, Hwang D-j, Bae S-C, Ahn I-P (2016) Proteome analysis of disease resistance against Ralstonia solanacearum in Potato Cultivar CT206-10. Plant Pathol J 32(1):25–32.  https://doi.org/10.5423/PPJ.OA.05.2015.0076CrossRefPubMedPubMedCentralGoogle Scholar
  139. Parker J, Koh J, Yoo M-J, Zhu N, Feole M, Yi S, Chen S (2013a) Quantitative proteomics of tomato defense against Pseudomonas syringae infection. Proteomics 13(12–13):1934–1946.  https://doi.org/10.1002/pmic.201200402CrossRefPubMedGoogle Scholar
  140. Parker J, Koh J, Yoo MJ, Zhu N, Feole M, Yi S, Chen S (2013b) Quantitative proteomics of tomato defense against Pseudomonas syringae infection. Proteomics 13(12–13):1934–1946CrossRefPubMedGoogle Scholar
  141. Pearson WR (2013) An introduction to sequence similarity (“Homology”) searching. Curr Protoc Bioinform/editoral board, Andreas D Baxevanis [et al] 0 3:10.1002/0471250953.bi0471250301s0471250942.  https://doi.org/10.1002/0471250953.bi0301s42CrossRefGoogle Scholar
  142. Pechanova O, Pechan T, Ozkan S, McCarthy FM, Williams WP, Luthe DS (2010) Proteome profile of the developing maize (Zea mays L.) rachis. Proteomics 10(16):3051–3055.  https://doi.org/10.1002/pmic.200900833CrossRefPubMedGoogle Scholar
  143. Pegg GF (1981) Chapter 7 – Biochemistry and physiology of pathogenesis. In: Fungal Wilt diseases of plants, Academic Press, Cambridge, Massachusetts, United States. pp 193–253.  https://doi.org/10.1016/B978-0-12-464450-2.50012-7CrossRefGoogle Scholar
  144. Pérez-Clemente RM, Vives V, Zandalinas SI, López-Climent MF, Muñoz V, Gómez-Cadenas A (2013) Biotechnological approaches to study plant responses to stress. Biomed Res Int 2013:654120.  https://doi.org/10.1155/2013/654120CrossRefPubMedGoogle Scholar
  145. Pieper U, Webb BM, Dong GQ, Schneidman-Duhovny D, Fan H, Kim SJ, Khuri N, Spill YG, Weinkam P, Hammel M, Tainer JA, Nilges M, Sali A (2014) ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 42(D1):D336–D346.  https://doi.org/10.1093/nar/gkt1144CrossRefPubMedGoogle Scholar
  146. Pirovani CP, Carvalho HAS, Machado RCR, Gomes DS, Alvim FC, Pomella AWV, Gramacho KP, Cascardo JCM, Pereira GAG, Micheli F (2008) Protein extraction for proteome analysis from cacao leaves and meristems, organs infected by Moniliophthora perniciosa, the causal agent of the witches’ broom disease. Electrophoresis 29(11):2391–2401.  https://doi.org/10.1002/elps.200700743CrossRefPubMedGoogle Scholar
  147. Placzek S, Schomburg I, Chang A, Jeske L, Ulbrich M, Tillack J, Schomburg D (2017) BRENDA in 2017: new perspectives and new tools in BRENDA. Nucleic Acids Res 45(D1):D380–D388.  https://doi.org/10.1093/nar/gkw952CrossRefPubMedGoogle Scholar
  148. Porteus B, Kocharunchitt C, Nilsson RE, Ross T, Bowman JP (2011) Utility of gel-free, label-free shotgun proteomics approaches to investigate microorganisms. Appl Microbiol Biotechnol 90(2):407–416.  https://doi.org/10.1007/s00253-011-3172-zCrossRefPubMedGoogle Scholar
  149. Qian D, Tian L, Qu L (2015) Proteomic analysis of endoplasmic reticulum stress responses in rice seeds. Sci Rep 5:14255.  https://doi.org/10.1038/srep14255. https://www.nature.com/articles/srep14255#supplementary-informationCrossRefPubMedPubMedCentralGoogle Scholar
  150. Raboanatahiry N, Chao H, Guo L, Gan J, Xiang J, Yan M, Zhang L, Yu L, Li M (2017) Synteny analysis of genes and distribution of loci controlling oil content and fatty acid profile based on QTL alignment map in Brassica napus. BMC Genomics 18(1):776.  https://doi.org/10.1186/s12864-017-4176-6CrossRefPubMedPubMedCentralGoogle Scholar
  151. Rahmad N, Al-Obaidi JR, Rashid NMN, Zean NB, Yusoff MHYM, Shaharuddin NS, Jamil NAM, Saleh NM (2014) Comparative proteomic analysis of different developmental stages of the edible mushroom Termitomyces heimii. Biol Res 47(1):30.  https://doi.org/10.1186/0717-6287-47-30CrossRefPubMedPubMedCentralGoogle Scholar
  152. Rao VS, Srinivas K, Sujini GN, Kumar GNS (2014) Protein-protein interaction detection: methods and analysis. Int J Proteomics 2014:12.  https://doi.org/10.1155/2014/147648CrossRefGoogle Scholar
  153. Romero-Rodríguez MC, Pascual J, Valledor L, Jorrín-Novo J (2014) Improving the quality of protein identification in non-model species. Characterization of Quercus ilex seed and Pinus radiata needle proteomes by using SEQUEST and custom databases. J Proteomics 105:85–91CrossRefPubMedGoogle Scholar
  154. Sadler NC, Wright AT (2015) Activity-based protein profiling of microbes. Curr Opin Chem Biol 24:139–144.  https://doi.org/10.1016/j.cbpa.2014.10.022CrossRefPubMedGoogle Scholar
  155. Salvato F, Havelund JF, Chen M, Rao RSP, Rogowska-Wrzesinska A, Jensen ON, Gang DR, Thelen JJ, Møller IM (2014) The potato tuber mitochondrial proteome. Plant Physiol 164(2):637CrossRefPubMedGoogle Scholar
  156. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32(Suppl_1):D449–D451.  https://doi.org/10.1093/nar/gkh086CrossRefPubMedPubMedCentralGoogle Scholar
  157. Schmidt UG, Endler A, Schelbert S, Brunner A, Schnell M, Neuhaus HE, Marty-Mazars D, Marty F, Baginsky S, Martinoia E (2007) Novel tonoplast transporters identified using a proteomic approach with vacuoles isolated from cauliflower buds. Plant Physiol 145(1):216CrossRefPubMedPubMedCentralGoogle Scholar
  158. Schneider M, Tognolli M, Bairoch A (2004) The Swiss-Prot protein knowledgebase and ExPASy: providing the plant community with high quality proteomic data and tools. Plant Physiol Biochem 42(12):1013–1021.  https://doi.org/10.1016/j.plaphy.2004.10.009CrossRefPubMedGoogle Scholar
  159. Sheynkman GM, Shortreed MR, Cesnik AJ, Smith LM (2016) Proteogenomics: integrating next-generation sequencing and mass spectrometry to characterize human proteomic variation. Annu Rev Anal Chem (Palo Alto, Calif) 9(1):521–545.  https://doi.org/10.1146/annurev-anchem-071015-041722CrossRefGoogle Scholar
  160. Shim D, Park S-G, Kim K, Bae W, Lee GW, Ha B-S, Ro H-S, Kim M, Ryoo R, Rhee S-K, Nou I-S, Koo C-D, Hong CP, Ryu H (2016) Whole genome de novo sequencing and genome annotation of the world popular cultivated edible mushroom, Lentinula edodes. J Biotechnol 223(Supplement C):24–25.  https://doi.org/10.1016/j.jbiotec.2016.02.032CrossRefPubMedGoogle Scholar
  161. Singh R (2015) Bioinformatics: genomics and proteomics. Vikas Publishing House, Chennai, IndiaGoogle Scholar
  162. Sinha R, Bhattacharyya D, Majumdar AB, Datta R, Hazra S, Chattopadhyay S (2013) Leaf proteome profiling of transgenic mint infected with Alternaria alternata. J Proteomics 93:117–132.  https://doi.org/10.1016/j.jprot.2013.01.020CrossRefPubMedGoogle Scholar
  163. Škuta C, Bartůněk P, Svozil D (2014) InCHlib – interactive cluster heatmap for web applications. J Cheminformatics 6(1):44.  https://doi.org/10.1186/s13321-014-0044-4CrossRefGoogle Scholar
  164. Song F, Qi D, Liu X, Kong X, Gao Y, Zhou Z, Wu Q (2015) Proteomic analysis of symbiotic proteins of Glomus mosseae and Amorpha fruticosa. Sci Rep 5:18031.  https://doi.org/10.1038/srep18031. https://www.nature.com/articles/srep18031#supplementary-informationCrossRefPubMedPubMedCentralGoogle Scholar
  165. Stare T, Stare K, Weckwerth W, Wienkoop S, Gruden K (2017) Comparison between proteome and transcriptome response in potato (Solanum tuberosum L.) leaves following Potato virus Y (PVY) infection. Proteomes 5(3):14CrossRefPubMedCentralGoogle Scholar
  166. Subramanian S, Cho U-H, Keyes C, Yu O (2009) Distinct changes in soybean xylem sap proteome in response to pathogenic and symbiotic microbe interactions. BMC Plant Biol 9(1):119.  https://doi.org/10.1186/1471-2229-9-119CrossRefPubMedPubMedCentralGoogle Scholar
  167. Suravajhala P, Kogelman LJ, Kadarmideen HN (2016) Multi-omic data integration and analysis using systems genomics approaches: methods and applications in animal production, health and welfare. Genet Sel Evol 48(1):38CrossRefPubMedPubMedCentralGoogle Scholar
  168. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452.  https://doi.org/10.1093/nar/gku1003CrossRefGoogle Scholar
  169. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P (2017a) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368CrossRefPubMedGoogle Scholar
  170. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017b) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 45(Database issue):D362–D368.  https://doi.org/10.1093/nar/gkw937CrossRefPubMedGoogle Scholar
  171. Taheri F, Nematzadeh G, Zamharir MG, Nekouei MK, Naghavi M, Mardi M, Salekdeh GH (2011) Proteomic analysis of the Mexican lime tree response to “Candidatus Phytoplasma aurantifolia” infection. Mol BioSystems 7(11):3028–3035.  https://doi.org/10.1039/c1mb05268cCrossRefGoogle Scholar
  172. Tamburino R, Vitale M, Ruggiero A, Sassi M, Sannino L, Arena S, Costa A, Batelli G, Zambrano N, Scaloni A, Grillo S, Scotti N (2017) Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum L.). BMC Plant Biol 17(1):40.  https://doi.org/10.1186/s12870-017-0971-0CrossRefPubMedPubMedCentralGoogle Scholar
  173. Tan BC, Lim YS, Lau S-E (2017) Proteomics in commercial crops: an overview. J Proteomics.  https://doi.org/10.1016/j.jprot.2017.05.018CrossRefPubMedGoogle Scholar
  174. Tang LH, Tan Q, Bao DP, Zhang XH, Jian HH, Li Y, Yang R, Wang Y (2016) Comparative proteomic analysis of light-induced mycelial Brown film formation in Lentinula edodes. Biomed Res Int 2016:8.  https://doi.org/10.1155/2016/5837293CrossRefGoogle Scholar
  175. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45(Database issue):D158–D169.  https://doi.org/10.1093/nar/gkw1099CrossRefGoogle Scholar
  176. Thrall PH, Oakeshott JG, Fitt G, Southerton S, Burdon JJ, Sheppard A, Russell RJ, Zalucki M, Heino M, Ford Denison R (2011) Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Evol Appl 4(2):200–215.  https://doi.org/10.1111/j.1752-4571.2010.00179.xCrossRefPubMedPubMedCentralGoogle Scholar
  177. Tyanova S, Temu T, Cox J (2016a) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301.  https://doi.org/10.1038/nprot.2016.136CrossRefPubMedGoogle Scholar
  178. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016b) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731.  https://doi.org/10.1038/nmeth.3901. https://www.nature.com/articles/nmeth.3901#supplementary-informationCrossRefPubMedGoogle Scholar
  179. Van De Wouw AP, Howlett BJ (2011) Fungal pathogenicity genes in the age of ‘omics’. Mol Plant Pathol 12(5):507–514CrossRefGoogle Scholar
  180. Van Emon JM (2016) The omics revolution in agricultural research. J Agric Food Chem 64(1):36–44.  https://doi.org/10.1021/acs.jafc.5b04515CrossRefPubMedGoogle Scholar
  181. Vanderschuren H, Lentz E, Zainuddin I, Gruissem W (2013) Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement. J Proteomics 93:5–19CrossRefPubMedGoogle Scholar
  182. Vu LD, Stes E, Van Bel M, Nelissen H, Maddelein D, Inzé D, Coppens F, Martens L, Gevaert K, De Smet I (2016) Up-to-date workflow for plant (Phospho)proteomics identifies differential drought-responsive phosphorylation events in Maize leaves. J Proteome Res 15(12):4304–4317.  https://doi.org/10.1021/acs.jproteome.6b00348CrossRefPubMedGoogle Scholar
  183. Wang F-X, Ma Y-P, Yang C-L, Zhao P-M, Yao Y, Jian G-L, Luo Y-M, Xia G-X (2011) Proteomic analysis of the sea-island cotton roots infected by wilt pathogen Verticillium dahliae. Proteomics 11(22):4296–4309.  https://doi.org/10.1002/pmic.201100062CrossRefPubMedGoogle Scholar
  184. Wang M, Gu B, Huang J, Jiang S, Chen Y, Yin Y, Pan Y, Yu G, Li Y, Wong BHC, Liang Y, Sun H (2013a) Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita. PLoS One 8(2):e56686.  https://doi.org/10.1371/journal.pone.0056686CrossRefPubMedPubMedCentralGoogle Scholar
  185. Wang Y, Kim SG, Wu J, Huh HH, Lee SJ, Rakwal R, Kumar Agrawal G, Park ZY, Young Kang K, Kim ST (2013b) Secretome analysis of the rice bacterium Xanthomonas oryzae (Xoo) using in vitro and in planta systems. Proteomics 13(12–13):1901–1912CrossRefPubMedGoogle Scholar
  186. Webb K, Broccardo C, Prenni J, Wintermantel W (2014) Proteomic profiling of sugar beet (Beta vulgaris) leaves during rhizomania compatible interactions. Proteomes 2(2):208CrossRefPubMedPubMedCentralGoogle Scholar
  187. Wei Z, Wang Z, Li X, Zhao Z, Deng M, Dong Y, Cao X, Fan G (2017) Comparative proteomic analysis of Paulownia fortunei response to phytoplasma infection with dimethyl sulfate treatment. Int J Genomics 2017:11.  https://doi.org/10.1155/2017/6542075CrossRefGoogle Scholar
  188. Wenger CD, Phanstiel DH, Lee MV, Bailey DJ, Coon JJ (2011) COMPASS: a suite of pre- and post-search proteomics software tools for OMSSA. Proteomics 11(6):1064–1074.  https://doi.org/10.1002/pmic.201000616CrossRefPubMedPubMedCentralGoogle Scholar
  189. Wu CH, Yeh L-SL, Huang H, Arminski L, Castro-Alvear J, Chen Y, Hu Z, Kourtesis P, Ledley RS, Suzek BE (2003) The protein information resource. Nucleic Acids Res 31(1):345–347CrossRefPubMedPubMedCentralGoogle Scholar
  190. Wu L, Wang S, Wu J, Han Z, Wang R, Wu L, Zhang H, Chen Y, Hu X (2015) Phosphoproteomic analysis of the resistant and susceptible genotypes of maize infected with sugarcane mosaic virus. Amino Acids 47(3):483–496.  https://doi.org/10.1007/s00726-014-1880-2CrossRefPubMedGoogle Scholar
  191. Xiong J (2006) Essential bioinformatics. Cambridge University Press, United KingdomGoogle Scholar
  192. Xu H, Freitas MA (2009) MassMatrix: a database search program for rapid characterization of proteins and peptides from Tandem Mass Spectrometry Data. Proteomics 9(6):1548–1555.  https://doi.org/10.1002/pmic.200700322CrossRefPubMedPubMedCentralGoogle Scholar
  193. Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X (2008) GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics: MCP 7(9):1598–1608.  https://doi.org/10.1074/mcp.M700574-MCP200CrossRefPubMedGoogle Scholar
  194. Yang R, Li Y, Song X, Tang L, Li C, Tan Q, Bao D (2017) The complete mitochondrial genome of the widely cultivated edible fungus Lentinula edodes. Mitochondrial DNA Part B 2(1):13–14.  https://doi.org/10.1080/23802359.2016.1275839CrossRefGoogle Scholar
  195. Yao YA, Wang J, Ma X, Lutts S, Sun C, Ma J, Yang Y, Achal V, Xu G (2012) Proteomic analysis of Mn-induced resistance to powdery mildew in grapevine. J Exp Bot 63(14):5155–5170.  https://doi.org/10.1093/jxb/ers175CrossRefPubMedGoogle Scholar
  196. Yap H-YY, Chooi Y-H, Firdaus-Raih M, Fung S-Y, Ng S-T, Tan C-S, Tan N-H (2014) The genome of the Tiger Milk mushroom, Lignosus rhinocerotis, provides insights into the genetic basis of its medicinal properties. BMC Genomics 15(1):635.  https://doi.org/10.1186/1471-2164-15-635CrossRefPubMedPubMedCentralGoogle Scholar
  197. Yap H-YY, Fung S-Y, Ng S-T, Tan C-S, Tan N-H (2015) Genome-based proteomic analysis of Lignosus rhinocerotis (Cooke) Ryvarden sclerotium. Int J Med Sci 12(1):23CrossRefPubMedPubMedCentralGoogle Scholar
  198. Yates Iii JR, Gilchrist A, Howell KE, Bergeron JJM (2005) Proteomics of organelles and large cellular structures. Nat Rev Mol Cell Biol 6:702.  https://doi.org/10.1038/nrm1711CrossRefGoogle Scholar
  199. Yin Y, Yu G, Chen Y, Jiang S, Wang M, Jin Y, Lan X, Liang Y, Sun H (2012) Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris. PLoS One 7(12):e51853CrossRefPubMedPubMedCentralGoogle Scholar
  200. Yin S-Y, Pradeep MS, Yang N-S (2015) Use of omics approaches for developing immune-modulatory and anti-inflammatory phytomedicines. In: Genomics, proteomics and metabolomics in nutraceuticals and functional foods. Wiley, pp 453–475.  https://doi.org/10.1002/9781118930458.ch36CrossRefGoogle Scholar
  201. Yun Z, Gao H, Liu P, Liu S, Luo T, Jin S, Xu Q, Xu J, Cheng Y, Deng X (2013) Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment. BMC Plant Biol 13(1):44.  https://doi.org/10.1186/1471-2229-13-44CrossRefPubMedPubMedCentralGoogle Scholar
  202. Zhan X, Long Y, Lu M (2017) Exploration of variations in proteome and metabolome for predictive diagnostics and personalized treatment algorithms: Innovative approach and examples for potential clinical application. J Proteomics.  https://doi.org/10.1016/j.jprot.2017.08.020CrossRefPubMedGoogle Scholar
  203. Zhang Y, Geng W, Shen Y, Wang Y, Dai Y-C (2014a) Edible mushroom cultivation for food security and rural development in China: bio-innovation, technological dissemination and marketing. Sustainability 6(5):2961–2973CrossRefGoogle Scholar
  204. Zhang Y, Nandakumar R, Bartelt-Hunt SL, Snow DD, Hodges L, Li X (2014b) Quantitative proteomic analysis of the Salmonella-lettuce interaction. Microbial Biotechnol 7(6):630–637.  https://doi.org/10.1111/1751-7915.12114CrossRefGoogle Scholar
  205. Zhang C-x, Tian Y, Cong P-h (2015) Proteome analysis of pathogen-responsive proteins from apple leaves induced by the Alternaria Blotch Alternaria alternata. PLoS One 10(6):e0122233.  https://doi.org/10.1371/journal.pone.0122233CrossRefPubMedPubMedCentralGoogle Scholar
  206. Zheng A, Luo J, Meng K, Li J, Zhang S, Li K, Liu G, Cai H, Bryden WL, Yao B (2014) Proteome changes underpin improved meat quality and yield of chickens (Gallus gallus) fed the probiotic Enterococcus faecium. BMC Genomics 15(1):1167.  https://doi.org/10.1186/1471-2164-15-1167CrossRefPubMedPubMedCentralGoogle Scholar
  207. Zheng A, Luo J, Meng K, Li J, Bryden WL, Chang W, Zhang S, Wang LXN, Liu G, Yao B (2016) Probiotic (Enterococcus faecium) induced responses of the hepatic proteome improves metabolic efficiency of broiler chickens (Gallus gallus). BMC Genomics 17(1):89.  https://doi.org/10.1186/s12864-016-2371-5CrossRefPubMedPubMedCentralGoogle Scholar
  208. Zhu P, Gu H, Jiao Y, Huang D, Chen M (2011) Genomics Proteomics Bioinformatics 9(4):128–137.  https://doi.org/10.1016/S1672-0229(11)60016-8CrossRefPubMedPubMedCentralGoogle Scholar
  209. Zhu G, Wu A, Xu X-J, Xiao P, Lu L, Liu J, Cao Y, Chen L, Wu J, Zhao X-M (2015) PPIM: a protein-protein interaction database for maize. Plant Physiol. pp. 01821.02015Google Scholar
  210. Zhu Y, Engström PG, Tellgren-Roth C, Baudo CD, Kennell JC, Sun S, Billmyre RB, Schröder MS, Andersson A, Holm T, Sigurgeirsson B, Wu G, Sankaranarayanan SR, Siddharthan R, Sanyal K, Lundeberg J, Nystedt B, Boekhout T, Dawson TL, Heitman J, Scheynius A, Lehtiö J (2017) Proteogenomics produces comprehensive and highly accurate protein-coding gene annotation in a complete genome assembly of Malassezia sympodialis. Nucleic Acids Res 45(5):2629–2643.  https://doi.org/10.1093/nar/gkx006CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Agro-Biotechnology Institute Malaysia (ABI), National Institutes of Biotechnology Malaysia (NIBM)SerdangMalaysia

Personalised recommendations