Advertisement

Further Properties of Self-assembly by Hairpin Formation

  • Henning Bordihn
  • Victor MitranaEmail author
  • Andrei Păun
  • Mihaela Păun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11493)

Abstract

We continue the investigation of three operations on words and languages with motivations coming from DNA biochemistry, namely unbounded and bounded hairpin completion and hairpin lengthening. We first show that each of these operations can be used for replacing the third step, the most laborious one, of the solution to the CNF-SAT reported in [28]. As not all the bounded/unbounded hairpin completion or lengthening of semilinear languages remain semilinear, we study sufficient conditions for semilinear languages to preserve their semilinearity property after applying once either the bounded or unbounded hairpin completion, or lengthening. A similar approach is then started for the iterated variants of the three operations. A few open problems are finally discussed.

Keywords

DNA hairpin formation Hairpin completion Bounded hairpin completion Hairpin lengthening Semilinearity property 

References

  1. 1.
    Blattner, M., Latteux, M.: Parikh-bounded languages. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 316–323. Springer, Heidelberg (1981).  https://doi.org/10.1007/3-540-10843-2_26CrossRefzbMATHGoogle Scholar
  2. 2.
    Bottoni, P., Labella, A., Manca, V., Mitrana, V.: Superposition based on Watson-Crick-like complementarity. Theory Comput. Syst. 39, 503–524 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Castellanos, J., Mitrana, V.: Some Remarks on Hairpin and Loop Languages, Words, Semigroups, and Translations, pp. 47–59. World Scientific, Singapore (2001)Google Scholar
  4. 4.
    Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Nat. Comput. 13, 517–534 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cheptea, D., Martin-Vide, C., Mitrana, V.: A new operation on words suggested by DNA biochemistry: hairpin completion. In: Proceedings of Transgressive Computing, pp. 216–228 (2006)Google Scholar
  6. 6.
    Csuhaj-Varjú, E., Petre, I., Vaszil, G.: Self-assembly of strings and languages. Theor. Comput. Sci. 374, 74–81 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Deaton, R., Murphy, R., Garzon, M., Franceschetti, D.R., Stevens, S.E.: Good encodings for DNA-based solutions to combinatorial problems. In: Proceedings of DNA-Based Computers II, DIMACS Series, vol. 44, pp. 247–258 (1998)Google Scholar
  8. 8.
    Enaganti, S.K., Ibarra, O.H., Kari, L., Kopecki, S.: On the overlap assembly of strings and languages. Nat. Comput. 16, 175–185 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Garzon, M., Deaton, R., Neathery, P., Murphy, R.C., Franceschetti, D.R., Stevens, E.: On the encoding problem for DNA computing. In: Proceedings of Third DIMACS Workshop on DNA-Based Computing, University of Pennsylvania, pp. 230–237 (1997)Google Scholar
  10. 10.
    Garzon, M., Deaton, R., Nino, L.F., Stevens Jr., S.E., Wittner, M.: Genome encoding for DNA computing. In: Proceedings of Third Genetic Programming Conference, Madison, MI, 1998, pp. 684–690 (1998)Google Scholar
  11. 11.
    Ginsburg, S.: AFL with the semilinear property. J. Comput. Syst. Sci. 5, 365–396 (1971)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ginsburg, S., Spanier, E.H., Henry, E.: Semigroups, Presburger formulas, and languages. Pac. J. Math. 16, 285–296 (1966)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Goldstine, J.: A simplified proof of Parikh’s theorem. Discrete Math. 19, 235–239 (1977)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ito, M., Leupold, P., Manea, F., Mitrana, V.: Bounded hairpin completion. Inf. Comput. 209, 471–485 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kari, L., Konstantinidis, S., Sosík, P., Thierrin, G.: On hairpin-free words and languages. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 296–307. Springer, Heidelberg (2005).  https://doi.org/10.1007/11505877_26CrossRefGoogle Scholar
  16. 16.
    Kopczyński, E., To, A.W. : Parikh images of grammars: complexity and applications. In: Proceedings of 25th Annual IEEE Symposium on Logic in Computer Science (LICS), 2010, pp. 80–89 (2010)Google Scholar
  17. 17.
    Kopecki, S.: On the iterated hairpin completion. Theor. Comput. Sci. 412, 3629–3638 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Manea, F., Martín-Vide, C., Mitrana, V.: On some algorithmic problems regarding the hairpin completion. Discrete Appl. Math. 157, 2143–2152 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Manea, F., Mitrana, V., Yokomori, T.: Two complementary operations inspired by the DNA hairpin formation: completion and reduction. Theor. Comput. Sci. 410, 417–425 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Manea, F., Mitrana, V., Sempere, J.M.: Some remarks on superposition based on Watson-Crick-like complementarity. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 372–383. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02737-6_30CrossRefGoogle Scholar
  21. 21.
    Manea, F., Mercas, R., Mitrana, V.: Hairpin lengthening and shortening of regular languages. In: Bordihn, H., Kutrib, M., Truthe, B. (eds.) Languages Alive. LNCS, vol. 7300, pp. 145–159. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31644-9_10CrossRefzbMATHGoogle Scholar
  22. 22.
    Manea, F., Martín-Vide, C., Mitrana, V.: Hairpin lengthening: language theoretic and algorithmic results. J. Log. Comput. 25, 987–1009 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Oppen, D.: A \(2^{2^{2^{pn}}}\) upper bound on the complexity of Presburger arithmetic. J. Comput. Syst. Sci. 16, 323–332 (1978)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Parikh, R.: On context-free languages. J. ACM 13, 570–581 (1966)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Păun, G., Rozenberg, G., Yokomori, T.: Hairpin languages. Intern. J. Found. Comp. Sci. 12, 837–847 (2001)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups. Springer-Verlag, New-York (2009).  https://doi.org/10.1007/978-1-4419-0160-6CrossRefzbMATHGoogle Scholar
  27. 27.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer-Verlag, Berlin (1997).  https://doi.org/10.1007/978-3-642-59136-5CrossRefzbMATHGoogle Scholar
  28. 28.
    Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T., Hagiya, M.: Molecular computation by DNA hairpin formation. Science 288, 1223–1226 (2000)CrossRefGoogle Scholar
  29. 29.
    Shikishima-Tsuji, K.: Regularity of iterative hairpin completions of crossing \((2,2)\)-words. Int. J. Found. Comput. Sci. 27, 375–390 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of DNA: some theory and experiments. In: DNA Bsed Computers II, vol. 44 of DIMACS (1999), pp. 191–213 (1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Henning Bordihn
    • 1
  • Victor Mitrana
    • 2
    • 3
    • 4
    Email author
  • Andrei Păun
    • 3
    • 4
  • Mihaela Păun
    • 4
    • 5
  1. 1.Department of Computer ScienceUniversity of PotsdamPotsdamGermany
  2. 2.Department of Information SystemsPolytechnic University of MadridMadridSpain
  3. 3.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania
  4. 4.National Institute for Research and Development of Biological ScienceBucharestRomania
  5. 5.Faculty of Administration and BusinessUniversity of BucharestBucharestRomania

Personalised recommendations