Advertisement

Relativizations of Nonuniform Quantum Finite Automata Families

  • Tomoyuki YamakamiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11493)

Abstract

Theory of relativization provides profound insights into the structural properties of various collections of mathematical problems by way of constructing desirable oracles that meet numerous requirements of the problems. This is a meaningful way to tackle unsolved questions on relationships among computational complexity classes induced by machine-based computations that can relativize. Slightly different from an early study on relativizations of uniform models of finite automata in [Tadaki, Yamakami, and Li (2010); Yamakami (2014)], we intend to discuss relativizations of state complexity classes (particularly, \(1\mathrm {BQ}\) and \(2\mathrm {BQ}\)) defined in terms of nonuniform families of time-unbounded quantum finite automata with polynomially many inner states. We create various relativized worlds where certain nonuniform state complexity classes become equal or different. By taking a nonuniform family of promise decision problems as an oracle, we can define a Turing reduction witnessed by a certain nonuniform finite automata family. We demonstrate closure properties of certain nonuniform state complexity classes under such reductions. Turing reducibility further enables us to define a hierarchy of nonuniform nondeterministic state complexity classes.

Keywords

Quantum finite automata Nonuniform state complexity Oracle finite automata Promise problems Turing reducibility 

References

  1. 1.
    Aaronson, S., Kuperberg, G.: Quantum versus classical proofs and advice. Theory Comput. 3, 129–157 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ambainis, A., Beaudry, M., Golovkins, M., Kikusts, A., Mercer, M., Thérien, D.: Algebraic results on quantum automata. Theory Comput. Syst. 39, 165–188 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baker, T., Gill, J., Solovay, R.: Relativizations of the P=?NP question. SIAM J. Comput. 4, 431–442 (1975)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berman, P., Lingas, A.: On complexity of regular languages in terms of finite automata. Technical report 304, Institute of Computer Science, Polish Academy of Science, Warsaw (1977)Google Scholar
  5. 5.
    Dwork, C., Stockmeyer, L.: A time-complexity gap for two-way probabilistic finite state automata. SIAM J. Comput. 19, 1011–1023 (1990)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Freivalds, R., Ozols, M., Mančinska, L.: Improved constructions of mixed state quantum automata. Theoret. Comput. Sci. 410, 1923–1931 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gruska, J.: Quantum Computing. McGraw-Hill, London (2000)zbMATHGoogle Scholar
  8. 8.
    Kapoutsis, C.A.: Size complexity of two-way finite automata. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02737-6_4CrossRefGoogle Scholar
  9. 9.
    Kapoutsis, C.A.: Minicomplexity. J. Autom. Lang. Comb. 17, 205–224 (2012)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kapoutsis, C.A.: Two-way automata versus logarithmic space. Theory Comput. Syst. 55, 421–447 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kapoutsis, C.A., Pighizzini, G.: Two-way automata characterizations of L/poly versus NL. Theory Comput. Syst. 56, 662–685 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kitaev, A., Shen, A., Vyalyi, M.: Classical and Quantum Computation. AMS, Providence (2002)CrossRefGoogle Scholar
  13. 13.
    Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata. In: Proceedings of STOC 1978, pp. 275–286 (1978)Google Scholar
  14. 14.
    Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing machines. Theor. Comput. Sci. 411, 22–43 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Villagra, M., Yamakami, T.: Quantum state complexity of formal languages. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 280–291. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19225-3_24CrossRefzbMATHGoogle Scholar
  16. 16.
    Yakaryilmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small space bounds. Inf. Comput. 279, 873–892 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yamakami, T.: Oracle pushdown automata, nondeterministic reducibilities, and the hierarchy over the family of context-free languages. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 514–525. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04298-5_45. A complete version is available at arXiv:1303.1717CrossRefzbMATHGoogle Scholar
  18. 18.
    Yamakami, T.: Nonuniform families of polynomial-size quantum finite automata and quantum logarithmic-space computation with polynomial-size advice. In: Martín-Vide, C., Okhotin, A., Shapira, D. (eds.) LATA 2019. LNCS, vol. 11417, pp. 134–145. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-13435-8_10CrossRefGoogle Scholar
  19. 19.
    Yamakami, T.: State complexity characterizations of parameterized degree-bounded graph connectivity, sub-linear space computation, and the linear space hypothesis. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 237–249. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94631-3_20. A complete and corrected version is found at arXiv:1811.06336CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversity of FukuiFukuiJapan

Personalised recommendations