Advertisement

Co-Designing the Computational Model and the Computing Substrate

(Invited Paper)
  • Susan StepneyEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11493)

Abstract

Given a proposed unconventional computing substrate, we can ask: Does it actually compute? If so, how well does it compute? Can it be made to compute better? Given a proposed unconventional computational model we can ask: How powerful is the model? Can it be implemented in a substrate? How faithfully or efficiently can it be implemented? Given complete freedom in the choice of model and substrate, we can ask: Can we co-design a model and substrate to work well together?

Here I propose an approach to posing and answering these questions, building on an existing definition of physical computing and framework for characterising the computing properties of given substrates.

Notes

Acknowledgements

Thanks to my colleagues Matt Dale, Dom Horsman, Viv Kendon, Julian Miller, Simon O’Keefe, Angelika Sebald, and Martin Trefzer for illuminating discussions, and collaboration on the work that has led to these ideas.

This work is part-funded by the SpInspired project, UK Engineering and Physical Sciences Research Council (EPSRC) grant EP/R032823/1.

References

  1. 1.
    Adamatzky, A. (ed.): Game of Life Cellular Automata. Springer, London (2010).  https://doi.org/10.1007/978-1-84996-217-9CrossRefzbMATHGoogle Scholar
  2. 2.
    Blakey, E.: Unconventional computers and unconventional complexity measures. In: Adamatzky, A. (ed.) Advances in Unconventional Computing. ECC, vol. 22, pp. 165–182. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-33924-5_7CrossRefGoogle Scholar
  3. 3.
    Broersma, H., Stepney, S., Wendin, G.: Computability and complexity of unconventional computing devices. In: Stepney, S., Rasmussen, S., Amos, M. (eds.) Computational Matter. NCS, pp. 185–229. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-65826-1_11CrossRefGoogle Scholar
  4. 4.
    Dale, M.: Neuroevolution of hierarchical reservoir computers. In: GECCO 2018, Kyoto, Japan, pp. 410–417. ACM (2018)Google Scholar
  5. 5.
    Dale, M., Dewhirst, J., O’Keefe, S., Sebald, A., Stepney, S., Trefzer, M.A.: The role of structure and complexity on reservoir computing quality. In: McQuillan, I., Seki, S. (eds.) UCNC 2019. LNCS, vol. 11493, pp. 52–64. Springer, Heidelberg (2019)Google Scholar
  6. 6.
    Dale, M., Miller, J.F., Stepney, S.: Reservoir computing as a model for In-Materio computing. In: Adamatzky, A. (ed.) Advances in Unconventional Computing. ECC, vol. 22, pp. 533–571. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-33924-5_22CrossRefGoogle Scholar
  7. 7.
    Dale, M., Miller, J.F., Stepney, S., Trefzer, M.A.: A substrate-independent framework to characterise reservoir computers. arXiv:1810.07135 (2018)
  8. 8.
    Dini, P., Nehaniv, C.L., Rothstein, E., Schreckling, D., Horváth, G.: BIOMICS: a theory of interaction computing. Computational Matter. NCS, pp. 249–268. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-65826-1_13CrossRefGoogle Scholar
  9. 9.
    Drossel, B.: Random boolean networks. In: Schuster, H.G. (ed.) Reviews of Nonlinear Dynamics and Complexity, vol. 1. Wiley, Weinheim (2008)Google Scholar
  10. 10.
    Faulconbridge, A., Stepney, S., Miller, J.F., Caves, L.S.D.: RBN-World: a sub-symbolic artificial chemistry. In: Kampis, G., Karsai, I., Szathmáry, E. (eds.) ECAL 2009. LNCS (LNAI), vol. 5777, pp. 377–384. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21283-3_47CrossRefGoogle Scholar
  11. 11.
    Faulkner, P., Krastev, M., Sebald, A., Stepney, S.: Sub-symbolic artificial chemistries. In: Stepney, S., Adamatzky, A. (eds.) Inspired by Nature. ECC, vol. 28, pp. 287–322. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-67997-6_14CrossRefGoogle Scholar
  12. 12.
    Giavitto, J.L., Michel, O.: MGS: a rule-based programming language for complex objects and collections. ENTCS 59(4), 286–304 (2001)zbMATHGoogle Scholar
  13. 13.
    Gundersen, M.S.: Reservoir Computing using Quasi-Uniform Cellular Automata. Master’s thesis, NTNU, Norway (2017)Google Scholar
  14. 14.
    Horsman, C., Stepney, S., Wagner, R.C., Kendon, V.: When does a physical system compute? Proc. R. Soc. A 470(2169), 20140182 (2014)CrossRefGoogle Scholar
  15. 15.
    Horsman, D., Kendon, V., Stepney, S.: Abstraction/representation theory and the natural science of computation. In: Cuffaro, M.E., Fletcher, S.C. (eds.) Physical Perspectives on Computation, Computational Perspectives on Physics, pp. 127–149. Cambridge University Press, Cambridge (2018)CrossRefGoogle Scholar
  16. 16.
    Horsman, D., Stepney, S., Kendon, V.: The natural science of computation. Commun. ACM 60(8), 31–34 (2017)CrossRefGoogle Scholar
  17. 17.
    Horsman, D.C.: Abstraction/representation theory for heterotic physical computing. Philos. Trans. R. Soc. A 373, 20140224 (2015)CrossRefGoogle Scholar
  18. 18.
    Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks - with an erratum note. GMD Report 148, German National Research Center for Information Technology (2010)Google Scholar
  19. 19.
    Kaneko, K.: Spatiotemporal intermittency in coupled map lattices. Progress Theoret. Phys. 74(5), 1033–1044 (1985)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kauffman, S.A.: The Origins of Order. Oxford University Press, Oxford (1993)Google Scholar
  22. 22.
    Kendon, V., Sebald, A., Stepney, S.: Heterotic computing: past, present and future. Phil. Trans. R. Soc. A 373, 20140225 (2015)CrossRefGoogle Scholar
  23. 23.
    Kendon, V., Sebald, A., Stepney, S., Bechmann, M., Hines, P., Wagner, R.C.: Heterotic computing. In: Calude, C.S., Kari, J., Petre, I., Rozenberg, G. (eds.) UC 2011. LNCS, vol. 6714, pp. 113–124. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21341-0_16CrossRefGoogle Scholar
  24. 24.
    Krastev, M., Sebald, A., Stepney, S.: Emergent bonding properties in the Spiky RBN AChem. In: ALife 2016, Cancun, Mexico, July 2016, pp. 600–607. MIT Press (2016)Google Scholar
  25. 25.
    Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search for novelty. In: ALIFE XI. pp. 329–336. MIT Press (2008)Google Scholar
  26. 26.
    Lehman, J., Stanley, K.O.: Efficiently evolving programs through the search for novelty. In: GECCO 2010, pp. 837–844. ACM (2010)Google Scholar
  27. 27.
    Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)CrossRefGoogle Scholar
  28. 28.
    Nehaniv, C.L., Rhodes, J., Egri-Nagy, A., Dini, P., Morris, E.R., Horváth, G., Karimi, F., Schreckling, D., Schilstra, M.J.: Symmetry structure in discrete models of biochemical systems: natural subsystems and the weak control hierarchy in a new model of computation driven by interactions. Phil. Trans. R. Soc. A 373, 20140223 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Sinha, S., Biswas, D.: Adaptive dynamics on a chaotic lattice. Phys. Rev. Lett. 71(13), 2010–2013 (1993)CrossRefGoogle Scholar
  30. 30.
    Sinha, S., Ditto, W.L.: Dynamics based computation. Phys. Rev. Lett. 81(10), 2156–2159 (1998)CrossRefGoogle Scholar
  31. 31.
    Sinha, S., Ditto, W.L.: Computing with distributed chaos. Phys. Rev. E 60(1), 363–377 (1999)CrossRefGoogle Scholar
  32. 32.
    Sipper, M.: Quasi-uniform computation-universal cellular automata. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 544–554. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-59496-5_324CrossRefGoogle Scholar
  33. 33.
    Spicher, A., Michel, O., Giavitto, J.-L.: A topological framework for the specification and the simulation of discrete dynamical systems. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 238–247. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30479-1_25CrossRefGoogle Scholar
  34. 34.
    Stepney, S.: Nonclassical computation: a dynamical systems perspective. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, vol. 4, pp. 1979–2025. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-540-92910-9_59CrossRefGoogle Scholar
  35. 35.
    Stepney, S., Kendon, V.: The role of structure and complexity on reservoir computing quality. In: McQuillan, I., Seki, S. (eds.) UCNC 2019. LNCS, vol. 11493, pp. 52–64. Springer, Heidelberg (2019)Google Scholar
  36. 36.
    von Neumann, J.: Theory of Self-Reproducing Automata (edited by A.W. Burks). University of Illinois Press, Urbana (1966)Google Scholar
  37. 37.
    Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601–644 (1983)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Wolfram, S.: Universality and complexity in cellular automata. Physica D 10(1), 1–35 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of YorkYorkUK
  2. 2.York Cross-disciplinary Centre for Systems AnalysisUniversity of YorkYorkUK

Personalised recommendations