Advertisement

The Lyapunov Exponents of Reversible Cellular Automata Are Uncomputable

  • Johan KopraEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11493)

Abstract

We will show that the class of reversible cellular automata (CA) with right Lyapunov exponent 2 cannot be separated algorithmically from the class of reversible CA whose right Lyapunov exponents are at most \(2-\delta \) for some absolute constant \(\delta >0\). Therefore there is no algorithm that, given as an input a description of an arbitrary reversible CA F and a positive rational number \(\epsilon >0\), outputs the Lyapunov exponents of F with accuracy \(\epsilon \).

Keywords

Cellular automata Lyapunov exponents Reversible computation Computability 

References

  1. 1.
    Cyr, V., Franks, J., Kra, B.: The spacetime of a shift endomorphism. Trans. Am. Math. Soc. 371(1), 461–488 (2019)MathSciNetCrossRefGoogle Scholar
  2. 2.
    D’Amico, M., Manzini, G., Margara, L.: On computing the entropy of cellular automata. Theoret. Comput. Sci. 290, 1629–1646 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Guillon, P., Salo, V.: Distortion in one-head machines and cellular automata. In: Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E. (eds.) AUTOMATA 2017. LNCS, vol. 10248, pp. 120–138. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58631-1_10CrossRefzbMATHGoogle Scholar
  4. 4.
    Guillon, P., Zinoviadis, Ch.: Densities and entropies in cellular automata. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 253–263. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30870-3_26CrossRefGoogle Scholar
  5. 5.
    Hedlund, G.: Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. Theory 3, 320–375 (1969)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hochman, M.: Non-expansive directions for \(\mathbb{Z}^2\) actions. Ergodic Theory Dyn. Syst. 31(1), 91–112 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hurd, L.P., Kari, J., Culik, K.: The topological entropy of cellular automata is uncomputable. Ergodic Theory Dyn. Syst. 12, 255–265 (1992)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J. Comput. 21, 571–586 (1992)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  10. 10.
    Lukkarila, V.: On undecidable dynamical properties of reversible one-dimensional cellular automata (Ph.D. thesis). Turku Centre for Computer Science (2010)Google Scholar
  11. 11.
    Shereshevsky, M.A.: Lyapunov exponents for one-dimensional cellular automata. J. Nonlinear Sci. 2(1), 1–8 (1992)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tisseur, P.: Cellular automata and Lyapunov exponents. Nonlinearity 13(5), 1547–1560 (2000)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of TurkuTurkuFinland

Personalised recommendations