Advertisement

An Exponentially Growing Nubot System Without State Changes

  • Chun-Ying Hou
  • Ho-Lin ChenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11493)

Abstract

Self-assembly is the process in which simple units assemble into complex structures without explicit external control. The nubot model was proposed to describe self-assembly systems involving active components capable of changing internal states and moving relative to each other. A major difference between the nubot model and many previous self-assembly models is its ability to perform exponential growth. Several previous works focused on restricting the nubot model while preserving exponential growth. In this work, we construct a nubot system which performs exponential growth without any state changes. All nubots stay in fixed internal states throughout the growth process. This construction not only improves the previous optimal construction, but also demonstrates new trade-offs between different types of rules in the nubot system.

References

  1. 1.
    Adleman, L., Cheng, Q., Goel, A., Huang, M.-D.: Running time and program size for self-assembled squares. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 740–748 (2001)Google Scholar
  2. 2.
    Barish, R.D., Rothemund, P.W.K., Winfree, E.: Two computational primitives for algorithmic self-assembly: copying and counting. Nano Lett. 5(12), 2586–2592 (2005)CrossRefGoogle Scholar
  3. 3.
    Bishop, J., Klavins, E.: An improved autonomous DNA nanomotor. Nano Lett. 7(9), 2574–2577 (2007)CrossRefGoogle Scholar
  4. 4.
    Chen, H.-L., Doty, D., Holden, D., Thachuk, C., Woods, D., Yang, C.-T.: Fast algorithmic self-assembly of simple shapes using random agitation. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 20–36. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11295-4_2CrossRefGoogle Scholar
  5. 5.
    Chen, H.-L., Schulman, R., Goel, A., Winfree, E.: Error correction for DNA self-assembly: preventing facet nucleation. Nano Lett. 7, 2913–2919 (2007)CrossRefGoogle Scholar
  6. 6.
    Cheng, Q., Goel, A., Moisset, P.: Optimal self-assembly of counters at temperature two. In: Proceedings of the 1st Conference on Foundations of Nanoscience: Self-Assembled Architectures and Devices, pp. 62–75 (2004)Google Scholar
  7. 7.
    Chin, Y.-R., Tsai, J.-T., Chen, H.-L.: A minimal requirement for self-assembly of lines in polylogarithmic time. In: Brijder, R., Qian, L. (eds.) DNA 2017. LNCS, vol. 10467, pp. 139–154. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66799-7_10CrossRefGoogle Scholar
  8. 8.
    Dietz, H., Douglas, S., Shih, W.: Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009)CrossRefGoogle Scholar
  9. 9.
    Ding, B., Seeman, N.: Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science 384, 1583–1585 (2006)CrossRefGoogle Scholar
  10. 10.
    Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction. Proc. Nat. Acad. Sci. 101(43), 15275–15278 (2004)CrossRefGoogle Scholar
  11. 11.
    Doty, D.: Randomized self-assembly for exact shapes. SIAM J. Comput. 39(8), 3521–3552 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The tile assembly model is intrinsically universal. In: Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science (2012)Google Scholar
  13. 13.
    Douglas, S., Dietz, H., Liedl, T., Hogberg, B., Graf, F., Shih, W.: Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245), 414–418 (2009)CrossRefGoogle Scholar
  14. 14.
    Green, S., Bath, J., Turberfield, A.: Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys. Rev. Lett. 101(23), 238101 (2008)CrossRefGoogle Scholar
  15. 15.
    Kao, M.-Y., Schweller, R.: Reducing tile complexity for self-assembly through temperature programming. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 571–580 (2006)Google Scholar
  16. 16.
    Lagoudakis, M., LaBean, T.: 2D DNA self-assembly for satisfiability. In: Proceedings of the 5th DIMACS Workshop on DNA Based Computers in DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 54, pp. 141–154 (1999)Google Scholar
  17. 17.
    Pei, R., Taylor, S., Stojanovic, M.: Coupling computing, movement, and drug release (2007)Google Scholar
  18. 18.
    Reif, J.H., Sahu, S.: Autonomous programmable DNA nanorobotic devices using DNAzymes. In: Proceedings of the Thirteenth International Meeting on DNA Based Computers, Memphis, TN, June 2007Google Scholar
  19. 19.
    Rothemund, P., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp. 459–468 (2000)Google Scholar
  20. 20.
    Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)CrossRefGoogle Scholar
  21. 21.
    Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLOS Biol. 2, 424–436 (2004)CrossRefGoogle Scholar
  22. 22.
    Seelig, G., Soloveichik, D., Zhang, D., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006)CrossRefGoogle Scholar
  23. 23.
    Sherman, W.B., Seeman, N.C.: A precisely controlled DNA bipedal walking device. Nano Lett. 4, 1203–1207 (2004)CrossRefGoogle Scholar
  24. 24.
    Shih, W.M., Quispe, J.D., Joyce, G.F.A.: A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427(6975), 618–621 (2004)CrossRefGoogle Scholar
  25. 25.
    Shin, J.-S., Pierce, N.A.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004)CrossRefGoogle Scholar
  26. 26.
    Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. Comput. 36, 1544–1569 (2007)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Tian, Y., He, Y., Chen, Y., Yin, P., Mao, C.: A DNAzyme that walks processively and autonomously along a one-dimensional track. Angewandte Chemie 44, 4355–4358 (2005)CrossRefGoogle Scholar
  28. 28.
    Venkataraman, S., Dirks, R.M., Rothemund, P.W.K., Winfree, E., Pierce, N.A.: An autonomous polymerization motor powered by DNA hybridization. Nature Nanotechnol. 2, 490–494 (2007)CrossRefGoogle Scholar
  29. 29.
    Win, M.N., Smolke, C.D.: Higher-order cellular information processing with synthetic RNA devices. Science 322(5900), 456 (2008)CrossRefGoogle Scholar
  30. 30.
    Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute of Technology, Pasadena (1998)Google Scholar
  31. 31.
    Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)CrossRefGoogle Scholar
  32. 32.
    Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS 2013, pp. 353–354 (2013)Google Scholar
  33. 33.
    Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular self-assembly pathways. Nature 451, 318–322 (2008)CrossRefGoogle Scholar
  34. 34.
    Yin, P., Turberfield, A.J., Reif, J.H.: Designs of autonomous unidirectional walking DNA devices. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 410–425. Springer, Heidelberg (2005).  https://doi.org/10.1007/11493785_36CrossRefGoogle Scholar
  35. 35.
    Yurke, B., Turberfield, A., Mills Jr., A., Simmel, F., Neumann, J.: A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)CrossRefGoogle Scholar
  36. 36.
    Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007)CrossRefGoogle Scholar
  37. 37.
    Zhang, Y., Seeman, N.: Construction of a DNA-truncated octahedron. J. Am. Chem. Soc. 116(5), 1661 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Taiwan UniversityTaipeiTaiwan

Personalised recommendations