Advertisement

On the Complexity of Self-assembly Tasks

  • Ho-Lin ChenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11493)

Abstract

In the theory of computation, the Chomsky hierarchy provides a way to characterize the complexity of different formal languages. For each class in the hierarchy, there is a specific type of automaton which recognizes all languages in the class. There different types of automaton can be viewed as standard requirements in order to recognize languages in these classes. In self-assembly, the main task is to generate patterns and shapes within certain resource limitations. Is it possible to separate these tasks into different classes? If yes, can we find a standard set of self-assembly instructions capable of performing all tasks in each class? In this talk, I will summarize the works towards finding a particular boundary between different self-assembly classes and some trade-offs between different types of self-assembly instructions.

References

  1. 1.
    Adleman, L., Cheng, Q., Goel, A., Huang, M.-D.: Running time and program size for self-assembled squares. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 740–748 (2001)Google Scholar
  2. 2.
    Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.-Y., Espanés, P., Schweller, R.: Complexities for generalized models of self-assembly. SIAM J. Comput. 34, 1493–1515 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barish, R.D., Rothemund, P.W.K., Winfree, E.: Two computational primitives for algorithmic self-assembly: copying and counting. Nano Lett. 5(12), 2586–2592 (2005)CrossRefGoogle Scholar
  4. 4.
    Bishop, J., Klavins, E.: An improved autonomous DNA nanomotor. Nano Lett. 7(9), 2574–2577 (2007)CrossRefGoogle Scholar
  5. 5.
    Chen, H.-L., Doty, D.: Parallelism and time in hierarchical self-assembly. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1163–1182 (2012)Google Scholar
  6. 6.
    Chen, H.-L., Doty, D., Holden, D., Thachuk, C., Woods, D., Yang, C.-T.: Fast algorithmic self-assembly of simple shapes using random agitation. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 20–36. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11295-4_2CrossRefGoogle Scholar
  7. 7.
    Chen, H.-L., Schulman, R., Goel, A., Winfree, E.: Error correction for DNA self-assembly: preventing facet nucleation. Nano Lett. 7, 2913–2919 (2007)CrossRefGoogle Scholar
  8. 8.
    Chen, M., Xin, D., Woods, D.: Parallel computation using active self-assembly. Nat. Comput. 14(2), 225–250 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cheng, Q., Goel, A., Moisset, P.: Optimal self-assembly of counters at temperature two. In: Proceedings of the 1st Conference on Foundations of Nanoscience: Self-Assembled Architectures and Devices, pp. 62–75 (2004)Google Scholar
  10. 10.
    Chin, Y.-R., Tsai, J.-T., Chen, H.-L.: A minimal requirement for self-assembly of lines in polylogarithmic time. In: Brijder, R., Qian, L. (eds.) DNA 2017. LNCS, vol. 10467, pp. 139–154. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66799-7_10CrossRefGoogle Scholar
  11. 11.
    Dabby, N., Chen, H.-L.: Active self-assembly of simple units using an insertion primitive. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1526–1536. SIAM (2013)Google Scholar
  12. 12.
    Dietz, H., Douglas, S., Shih, W.: Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009)CrossRefGoogle Scholar
  13. 13.
    Ding, B., Seeman, N.: Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science 384, 1583–1585 (2006)CrossRefGoogle Scholar
  14. 14.
    Doty, D.: Randomized self-assembly for exact shapes. SIAM J. Comput. 39(8), 3521–3552 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The tile assembly model is intrinsically universal. In: Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science (2012)Google Scholar
  16. 16.
    Douglas, S., Dietz, H., Liedl, T., Hogberg, B., Graf, F., Shih, W.: Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009)CrossRefGoogle Scholar
  17. 17.
    Green, S., Bath, J., Turberfield, A.: Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys. Rev. Lett. 101, 238101 (2008)CrossRefGoogle Scholar
  18. 18.
    Hou, C.-Y., Chen, H.-L.: An exponentially growing nubot system without state changes. In: McQuillan, I., Seki, S. (eds.) UCNC 2019. LNCS, vol. 11493, pp. 122–135 (2019)CrossRefGoogle Scholar
  19. 19.
    Kao, M.-Y., Schweller, R.: Reducing tile complexity for self-assembly through temperature programming. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 571–580 (2006)Google Scholar
  20. 20.
    Lagoudakis, M., LaBean, T.: 2D DNA self-assembly for satisfiability. In: Proceedings of the 5th DIMACS Workshop on DNA Based Computers in DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 54, pp. 141–154 (1999)Google Scholar
  21. 21.
    Rothemund, P., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp. 459–468 (2000)Google Scholar
  22. 22.
    Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)CrossRefGoogle Scholar
  23. 23.
    Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2, 424–436 (2004)CrossRefGoogle Scholar
  24. 24.
    Seelig, G., Soloveichik, D., Zhang, D., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006)CrossRefGoogle Scholar
  25. 25.
    Sherman, W.B., Seeman, N.C.: A precisely controlled DNA bipedal walking device. Nano Lett. 4, 1203–1207 (2004)CrossRefGoogle Scholar
  26. 26.
    Shih, W.M., Quispe, J.D., Joyce, G.F.A.: A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004)CrossRefGoogle Scholar
  27. 27.
    Shin, J.-S., Pierce, N.A.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004)CrossRefGoogle Scholar
  28. 28.
    Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. Comput. 36, 1544–1569 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute of Technology, Pasadena (1998)Google Scholar
  30. 30.
    Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar
  31. 31.
    Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS 2013, pp. 353–354 (2013)Google Scholar
  32. 32.
    Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular self-assembly pathways. Nature 451(7176), 318–322 (2008)CrossRefGoogle Scholar
  33. 33.
    Yurke, B., Turberfield, A., Mills Jr., A., Simmel, F., Neumann, J.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)CrossRefGoogle Scholar
  34. 34.
    Zhang, Y., Seeman, N.: Construction of a DNA-truncated octahedron. J. Am. Chem. Soc. 116(5), 1661 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Taiwan UniversityTaipeiTaiwan

Personalised recommendations