Advertisement

Information Processing and Storage in the Brain

  • Manfred FahleEmail author
Chapter

Abstract

This chapter aims to illustrate the reception, encoding, and storage of information—including its modification through learning—in the brain of mammals, especially humans. The presentation of these processes begins on the level of a black-box analysis, that is, with a description of behavior, including patient studies that measure the capabilities and limitations of the entire system. The next level investigates the brain and its function based on the anatomy and histology especially of the human cortex revealing a functional specialization of cortex as already found by Brodmann (Vergleichende Lokalisationslehre der Grosshirnrinde. In ihren Priczipien dargestellt auf Grund des Zellenbaues. Barth, 1909). This functional specialization can also be seen in the various imaging studies based on the recording of the electric or magnetic brain activity or on changes in blood flow in the brain (functional magnetic resonance imaging). The third level is that of single cell recordings, mostly in animals, which shows the properties of single neurons and small neuronal assemblies. The last and most basic level considered is that of the biochemistry of information processing. On this level, description of the cellular mechanisms underlying information storage is most prominent. Modeling will help understand the experimental results on each of these levels.

References

  1. 1.
    Álvarez, R., Masjuan, J.: Agnosias visuals. Rev. Clín. Esp. 216(2), 85–91 (2016)CrossRefGoogle Scholar
  2. 2.
    Bailey, C.H., Chen, M.C.: Morphological basis of long-term habituation and sensitization in Aplysia. Science. 220, 91–93 (1983)CrossRefGoogle Scholar
  3. 3.
    Belke, E., Meyer, A.S.: Tracking the time course of multidimensional stimulus discrimination: analyses of viewing patterns and processing times during “same”-“different” decisions. Eur. J. Cogn. Psychol. 14(2), 237–266 (2002).  https://doi.org/10.1080/09541440143000050 CrossRefGoogle Scholar
  4. 4.
    Bisiach, E., Luzzatti, C.: Unilateral neglect of representational space. Cortex. 14, 129–133 (1978)CrossRefGoogle Scholar
  5. 5.
    Braitenberg, V.: On the Texture of Brains. An Introduction to Neuroanatomy for the Cybernetically Minded. Springer, New York (1977)Google Scholar
  6. 6.
    Brodal, A.: Neurological anatomy. In: Relation to Clinical Medicine. Oxford University Press, New York (1969)Google Scholar
  7. 7.
    Brodmann, K.: Vergleichende Lokalisationslehre der Grosshirnrinde. In ihren Principien dargestellt auf Grund des Zellenbaues. Barth, Leipzig (1909)Google Scholar
  8. 8.
    Crair, M.C., Ruthazer, E.S., Gillespie, D.C., Stryker, M.P.: Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. J. Neurophysiol. 77(6), 3381–3385 (1997).  https://doi.org/10.1152/jn.1997.77.6.3381 CrossRefGoogle Scholar
  9. 9.
    Fahle, M.: Parallel perception of vernier offsets, curvature, and chevrons in humans. Vis. Res. 31, 2149–2184 (1991).  https://doi.org/10.1016/0042-6989(91)90170-A CrossRefGoogle Scholar
  10. 10.
    Fahle, M.: Gesichtssinn und Okulomotorik. In: Schmidt, R.F., Unsicker, K. (eds.) Lehrbuch Vorklinik Teil B: Anatomie, Biochemie und Physiologie des Nervensystems, der Sinnesorgane und des Bewegungsapparats. Kommunikation, Wahrnehmung und Handlung, pp. 253–299. Deutscher Ärzteverlag, Köln (2003)Google Scholar
  11. 11.
    Fahle, M., Greenlee, M. (eds.): The Neuropsychology of Vision. Oxford University Press, New York (2003)Google Scholar
  12. 12.
    Farah, M.J.: Visual Agnosia. Disorders of Object Recognition and What They Tell Us about Normal Vision. MIT Press, Cambridge (1991)Google Scholar
  13. 13.
    Goodale, M.A., Milner, A.D.: Separate visual pathways for perception and action. Trends Neurosci. 15(1), 20–25 (1992).  https://doi.org/10.1016/0166-2236(92)90344-8 CrossRefGoogle Scholar
  14. 14.
    Hochstein, S., Ahissar, M.: View from the top hierarchies and reverse hierarchies in the visual system. Neuron. 36, 791–804 (2002)CrossRefGoogle Scholar
  15. 15.
    Kandell, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Sciences. McGraw-Hill, New York (2000)Google Scholar
  16. 16.
    Kandell, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.J.: Principles of Neural Sciences. McGraw-Hill, New York (2013)Google Scholar
  17. 17.
    Kanwisher, N.: Functional specificity in the human brain: a window into the functional architecture of the mind. PNAS. 107(25), 11163–11170 (2010).  https://doi.org/10.1073/pnas.1005062107 CrossRefGoogle Scholar
  18. 18.
    Kranz, F., Ishai, A.: Face perception is modulated by sexual preference. Curr. Biol. 16(1), 63–68 (2006).  https://doi.org/10.1016/j.cub.2005.10.070 CrossRefGoogle Scholar
  19. 19.
    Newsome, W.T., Britten, K.H., Movshon, J.A.: Neuronal correlates of a perceptual decision. Nature. 341, 52–54 (1989).  https://doi.org/10.1038/341052a0 CrossRefGoogle Scholar
  20. 20.
    Oxford Living Dictionaries. https://en.oxforddictionaries.com/definition/information. Accessed 4 July 2018
  21. 21.
    Palm, G.: Neural Assemblies. An Alternative Approach to Artificial Intelligence. Springer, Berlin (1982)Google Scholar
  22. 22.
    Penfield, W., Rasmussen, T.: The Cerebral Cortex of Man: A Clinical Study of Localization of Function. Macmillan, New York (1950)Google Scholar
  23. 23.
    Rey, A.: L’examen psychologique dans les cas d’encéphalopathie traumatique (Les problems.). Arch. Psychol. 28, 215–285 (1941)Google Scholar
  24. 24.
    Roorda, A., Metha, A.B., Lennie, B., Williams, D.R.: Packing arrangement of the three cone classes in primate retina. Vis. Res. 41, 1291–1306 (2001)CrossRefGoogle Scholar
  25. 25.
    Salzman, C.D., Murasugi, C.M., Britten, K.H., Newsome, W.T.: Microstimulation in visual area MT: effects on direction discrimination performance. J. Neurosci. 12(6), 2331–2355 (1992).  https://doi.org/10.1523/JNEUROSCI.12-06-02331.1992 CrossRefGoogle Scholar
  26. 26.
    Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980)CrossRefGoogle Scholar
  27. 27.
    van Essen, D.C., Anderson, C.H., Felleman, D.J.: Information processing in the primate visual system: an integrated perspective. Science. 255, 419–423 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Zentrum für KognitionswissenschaftenUniversity of BremenBremenGermany

Personalised recommendations