Advertisement

Imaging Oral Biofilm and Plaque

  • Janet Ajdaharian
  • Jae Ho Baek
Chapter

Abstract

Oral biofilm is a primary determinant of oral health, yet our ability to detect, map, and characterize it in vivo remains extremely limited. Moreover, there exists an as yet unmet but pressing need for characterizing its properties and response to prevention and intervention measures. Because clinical mapping of oral biofilm has been primarily restricted to macroscopic plaque staining techniques combined with naked eye visualization, additional means of assessing and quantifying oral biofilm in situ at high levels of resolution are currently under development. This chapter addresses emerging optical imaging modalities for evaluating in vivo oral biofilm noninvasively. Desirable attributes include: informing on variables that translate into clinical decision-making guidance to improve diagnosis, better treatment planning and outcomes, ease and speed of use, appropriate cost for the indicated setting, patient-friendly probes, and reliability. In this chapter, the principles behind optical approaches to imaging and characterizing oral biofilm, as well as their feasibility and applicability for imaging in situ are reviewed.

Keywords

Oral biofilm Dental plaque Salivary pellicle Optical coherence tomography (OCT) Optical coherence microscopy (OCM) Confocal laser scanning microscopy (CLSM) Multiphoton fluorescence microcopy (MPM) Atomic force microscopy Light sheet fluorescence microscopy (LSFM) Ultrasound imaging Digital imaging 

References

  1. 1.
    Whittaker C, Ridgway H, Olson BH. Evaluation of cleaning strategies for removal of biofilms from reverse-osmosis membranes. Appl Environ Microbiol. 1984;48(2):395–403.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Chandki R, Banthia P, Banthia R. Biofilms: a microbial home. J Indian Soc Periodontol. 2011;15(2):111–4.  https://doi.org/10.4103/0972-124X.84377.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hannig M, Fiebiger M, Güntzer M, Döbert A, Zimehl R, Nekrasheych Y. Protective effect of the in situ formed short-term salivary pellicle. Arch Oral Biol. 2004;49:903–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Nieuw Amerongen AV, Oderkerk CH, Driessen AA. Role of mucins from human whole saliva in the protection of tooth enamel against demineralization in vitro. Caries Res. 1987;21:297–309.PubMedCrossRefGoogle Scholar
  5. 5.
    Hannig C, Wasser M, Becker K, Hannig M, Huber K, Attin T. Influence of different restorative materials on lysozyme and amylase activity of the salivary pellicle in situ. J Biomed Mater Res Part A. 2006;78A:755–61.CrossRefGoogle Scholar
  6. 6.
    Zahradnik RT, Moreno EC, Burke EJ. Effect of salivary pellicle on enamel subsurface demineralization in vitro. J Dent Res. 1976;55:664–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Hannig M, Hess NJ, Hoth-Hannig W, de Vrese M. Influence of salivary pellicle formation time on enamel demineralization-an in situ pilot study. Clin Oral Investig. 2003;7:158–61.PubMedCrossRefGoogle Scholar
  8. 8.
    Roberts AP, Mullany P. Oral biofilms: a reservoir of transferable, bacterial, antimicrobial resistance. Expert Rev Anti Infect Ther. 2010;8(12):1441–50.PubMedCrossRefGoogle Scholar
  9. 9.
    Ahimou F, Semmens MJ, Novak PJ, Haugstad G. Biofilm cohesiveness measurement using a novel atomic force microscopy methodology. Appl Environ Microbiol. 2007;73(9):2897–904.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Schilling KM, Bowe WH. Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for streptococcus mutans. Infect Immun. 1992;60:284–95.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Gong K, Mailloux L, Herzberg MC. Salivary film express a complex, macromolecular binding site for streptococcus sanguis. J Biol Chem. 2000;275:8970–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Dobell C. Antony Van Leewenhoek and his ‘little animals’. The first observations on entozoic protozoa and bacteria. New York: Russell and Russell, Inc.; 1958. p. 236–56.Google Scholar
  13. 13.
    Karygianni L, Follo M, Hellwig E, Burghardt D, Wolkewitz M, Anderson A, et al. Microscope-based imaging platform for large-scale analysis of oral biofilms. Appl Environ Microbiol. 2012;78(24):8703–11.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Zaura-Arite E, van Marle J, ten Cate JM. Conforcal microscopy study of undisturbed and chlorhexidine-treated dental biofilm. J Dent Res. 2016;80(5):1436–40.CrossRefGoogle Scholar
  15. 15.
    Wood SR, Kirkham J, Marsh PD, Shore RC, Nattress B, Robinson C. Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res. 2016;79(1):21–7.CrossRefGoogle Scholar
  16. 16.
    Dige I, Nilsson H, Kilian M, Nyvad B. In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur J Oral Sci. 2007;115(6):459–67.PubMedCrossRefGoogle Scholar
  17. 17.
    Netuschil L, Reich E, Unteregger G, Schulean A, Brecx M. A pilot study of confocal laser scanning microcopy for the assessment of undisturbed dental plaque vitality and topography. Arch Oral Biol. 1998;43(4):277–85.PubMedCrossRefGoogle Scholar
  18. 18.
    Sandison D, Webb W. Background rejection and signal-to-noise optimization in the confocal and alternative fluorescence microscopes. Appl Opt. 1994;33:603–10.PubMedCrossRefGoogle Scholar
  19. 19.
    Gratton E, van de Ven MJ. Laser sources for confocal microscopy. In: Pawley JB, editor. Handbook of biological confocal microscopy. New York: Plenum Press; 1995. p. 69–98.CrossRefGoogle Scholar
  20. 20.
    Ashkin A, Dziedzic JM, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature. 1987;330:769–71.PubMedCrossRefGoogle Scholar
  21. 21.
    Claxton NS, Fellers TJ, Davidson MW. Laser scanning confocal microscopy. Tallahassee: Department of Optical Microscopy and Digital Imaging, Florida State University; 2006. http://www.olympusconfocal.com/theory/LSCMIntro.pdf.Google Scholar
  22. 22.
    Klug B, Rodler C, Koller M, Wimmer G, Kessler H, Grube M, et al. Oral biofilm analysis of palatal expanders by fluorescence in-situ hybridization and confocal laser scanning microscopy. J Vis Exp. 2011;56:2967.Google Scholar
  23. 23.
    Gabriela PM. Confocal scanning laser microscopy in the study of biofilm formation in tissues of the upper airway in otolaryngologic disease. Miscosc Sci Technol Appl Educ. 2010;3:590–6.Google Scholar
  24. 24.
    Nakano A. Spinning disk confocal microscopy—a cutting-edge tool for imaging of membrane traffic. Cell Struct Funct. 2002;27(5):349–55.PubMedCrossRefGoogle Scholar
  25. 25.
    Tomas I, Henderson B, Biz P, Donos N. In vivo oral biofilm analysis by conforcal laser scanning microscopy: methodological approaches. Miscosco Sci Technol Appl Educ. 2010;3:597–606.Google Scholar
  26. 26.
    Baek JH, Krasieva T, Tang S, Ahn Y, Kim C, Vu D, Chen Z, Wilder-Smith P. Optical approach to the salivary pellicle. J Biomed Opt. 2009;14(4):044001.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Wood SR, Kirkham J, Marsh PD, Shore RC, Nattress B, Robinson C. Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res. 2000;79:21–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Wecke J, Kersten T, Madela K, Moter A, Göbel UB, Friedmann A, Bernimoulin J. A novel technique for monitoring the development of bacterial biofilms in human periodontal pockets. FEMS Microbiol Lett. 2000;191:95–101.PubMedCrossRefGoogle Scholar
  29. 29.
    Auschill TM, Hellwig E, Sculean A, Hein N, Arweiller NB. Impact of the intraoral location on the rate of biofilm growth. Clin Oral Investig. 2004;8:97–101.PubMedCrossRefGoogle Scholar
  30. 30.
    Watson PS, Pontefract HA, Devine DA, Shore RC, Nattres BR, Kirkham J, Robinson C. Penetration of fluoride into natural plaque biofilms. J Dent Res. 2005;84:451–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Neu TR, Kuhlicke U, Lawrence JR. Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms. Appl Environ Microbiol. 2002;68(2):901–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 248:73–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 2003;21:1369–77.PubMedCrossRefGoogle Scholar
  34. 34.
    Maeda K, Tribble GD, Tucker CM, Anaya C, Shizukuishi S, Lewis JP, Demuth DR, Lamont RJ. A porphyromonas gingivalis tyrosine phosphatase is a multifunctional regulator of virulence attributes. Mol Microbiol. 2008;69(5):1153–64.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Tung OH, Lee SY, Lai YL, Chen HF. Characteristics of subgingival calculus detection by multiphoton fluorescence microscopy. J Biomed Opt. 2011;16(6):066017.PubMedCrossRefGoogle Scholar
  36. 36.
    König K. Multiphoton microscopy in life sciences. J Microsc. 2000;200(2):83–104.PubMedCrossRefGoogle Scholar
  37. 37.
    Bode J, Kruwel T, Tews B. Light sheet fluorescence microscopy combined with optical clearing methods as a novel imaging tool in biomedical research. Eur Med J. 2017;1:67–74.Google Scholar
  38. 38.
    Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56:930–3.PubMedCrossRefGoogle Scholar
  39. 39.
    Dickinson ME, Mann AB. Nanomechanics and morphology of salivary pellicle. J Mater Res. 2006;21(8):1996–2002.CrossRefGoogle Scholar
  40. 40.
    Howland R, Benatar L, Park scientific instruments. A practical guide to scanning probe microscopy. Park scientific instruments; 1996.Google Scholar
  41. 41.
    Germano F, Bramanti E, Arcuri C, Cecchetti F, Cicciu M. Atomic force microcopy of bacteria from periodontal subgingival biofilm: preliminary study results. Eur J Dent. 2013;7(2):152–8.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Sharma S, Lavender S, Guo L, Gimzewski JK. Nasoscale characterization of effect of L-arginine on S. mutans biofilm adhesion by atomic force microscopy. Microbiology. 2014;160:1466–73.PubMedCrossRefGoogle Scholar
  43. 43.
    Dickinson ME, Mann AB. Nanoscale characterisation of salivary pellicle. MRS Proc. 844.  https://doi.org/10.1557/PROC-844-Y2.3/R2.3.
  44. 44.
    Meller K, Theiss C. Atomic force microscopy and confocal laser scanning microscopy on the cytoskeleton of permeabilized and embedded cells. Ultramicroscopy. 2005;106:320–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Kumar S, Hoh JH. Probing the machinery of intracelluer trafficking with the atomic force microscope. Traffic. 2001;2(11):746–56.PubMedCrossRefGoogle Scholar
  46. 46.
    Siedentopf H. Visualization and size measurement of ultramicroscopic particles, with special application to gold-colored ruby glass. Ann Phys. 1903;10:1–39.Google Scholar
  47. 47.
    Santi PA. Light sheet fluorescence microscopy. J Histochem Cytochem. 2011;59(2):129–38.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Cavalcanti IM, Ricomini FAP, Lucena-Ferreira SC, da Silva WJ, Paes Leme AF, Senna PM, Del Bel Cury AA. Salivary pellicle composition and multispecies biofilm developed on titanium nitrided by cold plasma. Arch Oral Biol. 2014;59(7):695–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Kolenbrander PE, Anderson RN, Palmar RJ Jr, et al. Communication among oral bacteria. Microbiol Mol Biol Rev. 2002;66(3):486–505.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Vokes DE, Jackson R, Guo S, Perez A, Su J, Ridgway M, Armstrong WB, Chen Z, Wong BJ. Optical coherence tomography-enhanced microlaryngoscopy: preliminary report of a noncontact optical coherence tomography system integrated with a surgical microscope. Ann Otol Rhinol Laryngol. 2008;117(7):538–47.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Chelliyil RG, Ralston TS, Marks DL, Boppart SA. High speed processing architecture for spectral-domain optical coherence microscopy. J Biomed Opt. 2008;13(4):44013.CrossRefGoogle Scholar
  52. 52.
    Sumen C, Mempel TR, Mazo IB, von Andrian UH. Intravital microscopy: visualizing immunity in context. Immunity. 2004;21(3):315–29.PubMedGoogle Scholar
  53. 53.
    Huang R, Li M, Gregory RL. Bacterial interactions in dental biofilm. Virulence. 2011;2:435–44.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Corbin A, Pitts B, Parker A, Stewart PS. Antimicrobial penetration and efficancy in an in vitro oral biofilm model. Antimicrob Agents Chemother. 2011;55(7):3338–44.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Baker PJ, Pintar AL, Lin-Gibson S, Lin NJ, Lopez-Perez D. Evaluating the activity of an anti-biofilm agent via imaging. BioImaging Informatics Conference. 2015.Google Scholar
  56. 56.
    March PD. Dental plaque as a microbial biofilm. Caries Res. 2004;38(3):204–11.CrossRefGoogle Scholar
  57. 57.
    Ajdaharian J, Dadkhah M, Sabokpey S, Biren-Fetz J, Chung NE, Wink C, Wilder-Smith P. Multimodality imaging of the effects of a novel dentifrice on oral biofilm. Lasers Surg Med. 2014;46(7):546–52.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Quintas V, Prada-López I, Prados-Frutos JC, Tomás I. In situ antimicrobial activity on oral biofilm: essential oils vs. 0.2% chlorhexidine. Clin Oral Investig. 2015;19(1):97–107.PubMedCrossRefGoogle Scholar
  59. 59.
    McNamara PM, Dsouza R, O’Riordan C, Collins S, O’Brien P, Wilson C, Hogan J, Leahy MJ. Development of a first-generation miniature multiple reference optical coherence tomography imaging device. J Biomed Opt. 2016;21(12):126020.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Janet Ajdaharian
    • 1
  • Jae Ho Baek
    • 2
    • 3
    • 4
  1. 1.Beckman Laser Institute, University of CaliforniaIrvineUSA
  2. 2.Department of OrthodonticsDental Hospital, Pusan National UniversityYangsan CitySouth Korea
  3. 3.Department of DentistryUlsan University HospitalUlsan CitySouth Korea
  4. 4.WeSmile Orthodontic ClinicUlsan CitySouth Korea

Personalised recommendations