Advertisement

Periodontics

  • Carmen Todea
  • Silvana Canjau
Chapter

Abstract

For decades, there has been an ongoing search for clinically acceptable methods for the accurate, noninvasive diagnosis, and prognosis of periodontitis. There are several well-known inherent drawbacks with current clinical procedures. The purpose of this chapter is to summarize some of the newly emerging diagnostic approaches, namely, laser Doppler (LD) imaging, optical coherence tomography (OCT), infrared spectroscopy, and ultrasound. The history and attractive features of these new approaches are briefly illustrated, and the interesting and significant inventions related to dental applications are discussed. The particularly attractive aspects for the dental community are that some of these methods are entirely noninvasive, do not impose any discomfort to the patients during the procedure, and require no tissue to be extracted. Morphologically, some other noninvasive imaging modalities, such as OCT and ultrasound, could be employed to accurately measure probing depths and assess the status of periodontal attachment, the front-line of disease progression. These methods could either replace traditional clinical examinations for the diagnosis of periodontitis or at least serve as attractive complementary diagnostic tools. However, the potential of these techniques requires careful, informed examination given the multifactorial character of periodontal disease. Alternative modalities like microbiologic and genetic approaches are also being developed.

References

  1. 1.
    Sanz M, Newman MG, Quirynen M. Advanced diagnostic techniques. In: Newman MG, Takei HH, Klokkevold PR, Carranza FA, editors. Carranza’s clinical periodontology. 10th ed. St Louis: Saunders; 2006. p. 579–601.Google Scholar
  2. 2.
    American Academy of Periodontology. Position paper: diagnosis of periodontal diseases. J Periodontol. 2003;74:1237–47.CrossRefGoogle Scholar
  3. 3.
    Michaud DS, Liu Y, Meyer M, Giovannucci E, Joshipura K. Periodontal disease, tooth loss, and cancer risk in male health professionals: a prospective cohort study. Lancet Oncol. 2008;9:550–8.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S. Ndiaye: the global burden of oral diseases and risks to oral health. Bull World Health Organ. 2005;83:661–9.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Albandar JM, Brunelle JA, Kingman A. Destructive periodontal disease in adults 30 years of age and older in the United States, 1988–1994. J Periodontol. 1999;70:13–29. Erratum, 70:351.PubMedCrossRefGoogle Scholar
  6. 6.
    Berezow AB, Darveau RP. Microbial shift and periodontitis. Periodontol 2000. 2011;55:36–47.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    D’Aiuto F, Parkar M, Andreaou G, Brett PM, Ready D, Tonetti MS. Periodontitis and atherogenesis: causal association or simple coincidence? J Clin Periodontol. 2004;31:402–11.PubMedCrossRefGoogle Scholar
  8. 8.
    De Backer D, Donadello K, Taccone FS, Ospina-Tascon G, Salgado D, Vincent JL. Microcirculatory alterations: potential mechanisms and implications for therapy. Ann Intensive Care. 2011;1:27.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Develioglu H, Kesim B, Tuncel A. Evaluation of the marginal gingival health using laser Doppler flowmetry. Braz Dent J. 2006;17:219–22.PubMedCrossRefGoogle Scholar
  10. 10.
    Develioglu H, Ozcan G, Taner L, Ozgören O. A limited and useful approach to determine proximal periodontal health. West Indian Med J. 2010;59:215–8.PubMedGoogle Scholar
  11. 11.
    Gleissner C, Kempski O, Peylo S, Glatxel JH, Willershausen B. Local gingival blood flow at healthy and inflamed sites measured by laser Doppler flowmetry. J Periodontol. 2006;77:1762–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Taba M, Kinney J, Kim AS, et al. Diagnostic biomarkers for oral and periodontal diseases. Dent Clin North Am. 2005;49:551–71.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Giannobile WV, Beikler T, Kinney JS, et al. Saliva as a diagnostic tool for periodontal disease: current state and future directions. Periodontol 2000. 2009;50:52–64.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Zhang L, Henson BS, Camargo PM, et al. The clinical value of salivary biomarkers for periodontal disease. Periodontol 2000. 2009;51:25–37.PubMedCrossRefGoogle Scholar
  15. 15.
    Tenenbaum HC, Tenenbaum H, Zohar R. Future treatment and diagnostic strategies for periodontal diseases. Dent Clin North Am. 2005;49:677–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Stern MD. In vivo evaluation of microcirculation by coherent light scattering. Nature. 1975;254:56–8.  https://doi.org/10.1038/254056a0.CrossRefPubMedGoogle Scholar
  17. 17.
    Kerdvongbundit V, Sirirat M, Sirikulsathean A, Kasetsuwan J, Hasegawa A. Blood flow and human periodontal status. Odontology. 2002;90(1):52–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Hinrichs JE, LaBelle LL, Aeppli D. An evaluation of laser Doppler readings obtained from human gingival sulci. J Periodontol. 1995;66:171–6.  https://doi.org/10.1902/jop.1995.66.3.171.CrossRefPubMedGoogle Scholar
  19. 19.
    Kerdvongbundit V, Vongsavan N, Soo-Ampon S, Hasegawa A. Microcirculation and micromorphology of healthy and inflamed gingivae. Odontologia. 2003;91(1):19–25.  https://doi.org/10.1007/s102660200007.CrossRefGoogle Scholar
  20. 20.
    Kindlová M. The blood supply of the marginal periodontium in Macacus rhesus. Arch Oral Biol. 1965;10:869–74.PubMedCrossRefGoogle Scholar
  21. 21.
    Egelberg J. The blood vessels of the dento-gingival junction. J Periodontal Res. 1966;1:163–79.PubMedCrossRefGoogle Scholar
  22. 22.
    Hansson BO, Lindhe J, Branemark PI. Microvascular topography and function in clinically healthy and chronically inflamed dentogingival tissues—a vital microscopic study in dogs. Periodontics. 1968;6:264–71.PubMedGoogle Scholar
  23. 23.
    Hock J, Nuki K. A vital microscopy study of the morphology of normal and inflamed gingiva. J Periodontal Res. 1971;6:81–8.  https://doi.org/10.1111/j.1600-0765.1971.tb00592.x.CrossRefPubMedGoogle Scholar
  24. 24.
    Nuki K, Hock J. The organization of the gingival vasculature. J Periodontal Res. 1974;9:305–13.  https://doi.org/10.1111/j.1600-0765.1974.tb00686.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Vág J, Fazekas A. Influence of restorative manipulations on the blood perfusion of human marginal gingiva as measured by laser Doppler flowmetry. J Oral Rehabil. 2002;29(1):52–7.  https://doi.org/10.1046/j.1365-2842.2002.00818.x.CrossRefPubMedGoogle Scholar
  26. 26.
    Hock J, Nuki K, Schlenker R, Hawks A. Clearance rates of Xenon-133 in non-inflamed and inflamed gingiva of dogs. Arch Oral Biol. 1980;25:445–9.  https://doi.org/10.1016/0003-9969(80)90050-3.CrossRefPubMedGoogle Scholar
  27. 27.
    Clarke NG, Shepherd BC, Hirsch RS. The effects of intra-arterial epinephrine and nicotine on gingival circulation. Oral Surg Oral Med Oral Pathol. 1981;52:577–82.  https://doi.org/10.1016/0030-4220(81)90071-2.CrossRefPubMedGoogle Scholar
  28. 28.
    Kaplan ML, Jeffcoat MK, Goldhaber P. Blood flow in gingiva and alveolar bone in beagles with periodontal disease. J Periodontal Res. 1982;17:384–9.  https://doi.org/10.1111/j.1600-0765.1982.tb01169.x.CrossRefPubMedGoogle Scholar
  29. 29.
    Akpinar KE, Er K, Polat S, Polat NT. Effect of gingiva on laser Doppler pulpal blood flow measurements. J Endod. 2004;30(3):138–40.  https://doi.org/10.1097/00004770-200403000-00003.CrossRefPubMedGoogle Scholar
  30. 30.
    Matsuo M, Okudera T, Takahashi SS, Wada-Takahashi S, Maeda S, Iimura A. Microcirculation alterations in experimentally induced gingivitis in dogs. Anat Sci Int. 2017;92:112–7.  https://doi.org/10.1007/s12565-015-0324-8.CrossRefPubMedGoogle Scholar
  31. 31.
    Keremi B, Csempesz F, Vag J, Gyorfi A, Fazekas A. Blood flow in marginal gingiva as measured with laser Doppler. Fogorv Sz. 2000;10:163–8.Google Scholar
  32. 32.
    Kerdvongbundit V, Vongsavan N, Soo-Ampon S, Phankosol P, Hasegawa A. Microcirculation of the healthy human gingiva. Odontology. 2002;90:48–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Donos N, D’Aiuto F, Retzepi M, Tonetti M. Evaluation of gingival blood flow by the use of laser Doppler flowmetry following periodontal surgery: a pilot study. J Periodontal Res. 2005;40:129–37.PubMedCrossRefGoogle Scholar
  34. 34.
    Matheny JL, Jhonson DT, Vroth GI. Aging and microcirculatory dynamics in human gingiva. J Clin Periodontol. 1993;20:471–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Perry DA, Macdowell J, Goodis HI. Gingival microcirculation response to tooth brushing measured by laser Doppler flowmetry. J Periodontol. 1997;68:990–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Öberg PA, Hollaway G. Gingival blood flow measured with a laser Doppler flowmetry. J Periodontol. 1986;21:73–85.Google Scholar
  37. 37.
    Vag J, Fazekas A. Influence of restorative manipulations on the blood perfusion of human marginal gingiva as measured by laser Doppler flowmetry. J Oral Rehabil. 2002;29:52–7.PubMedCrossRefGoogle Scholar
  38. 38.
    al-Wahadni A, Linden GJ, Hussey DL. Periodontal response to cantilevered and fixed-fixed resin bonded bridges. Eur J Prosthodont Restor Dent. 1999;7:57–60.PubMedGoogle Scholar
  39. 39.
    Baab DA, Oberg A, Lundstrom A. Gingival blood flow and temperature changes in young humans with a history of periodontitis. Arch Oral Biol. 1990;35:95–101.PubMedCrossRefGoogle Scholar
  40. 40.
    Hock JM, Kim S. Blood flow in healed and inflamed tissue of dogs. J Periodontal Res. 1987;22:1–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Wilder-Smith P, Frosch P. Laser Doppler flowmetry: a method for the determination of periodontal blood flow. Dtsch Zahnarztl Z. 1988;43:994–7.PubMedGoogle Scholar
  42. 42.
    Kerdvongbundit V, Vongsavan N, Soo-Ampon S, Hasegawa A. Microcirculation and micromorphology of healthy and inflamed gingivae. Odontology. 2003;91:19–25.PubMedCrossRefGoogle Scholar
  43. 43.
    Matheny JL, Abrams H, Johnson DT, Roth GI. Microcirculatory dynamics in experimental human gingivitis. J Clin Periodontol. 1993;20:578–83.PubMedCrossRefGoogle Scholar
  44. 44.
    Baab DA, Oberg PA. Laser Doppler measurement of gingival blood flow in dogs with increasing and decreasing inflammation. Arch Oral Biol. 1987;32:551–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Hinrichs JE, Jarzembinski C, Hardie N, Aeppli D. Intrasulcular laser Doppler readings before and after root planing. J Clin Periodontol. 1995;22:817–23.PubMedCrossRefGoogle Scholar
  46. 46.
    Retzepi M, Tonetti M, Donos N. Gingival blood flow changes following periodontal access flap surgery using laser Doppler flowmetry. J Clin Periodontol. 2007;34:437–43.PubMedCrossRefGoogle Scholar
  47. 47.
    Retzepi M, Tonetti M, Donos N. Comparison of gingival blood flow during healing of simplified papilla preservation and modified Widman flap surgery: a clinical trial using laser Doppler flowmetry. J Clin Periodontol. 2007;34:903–11.PubMedCrossRefGoogle Scholar
  48. 48.
    Baab DA, Oberg PA. The effect of cigarette smoking on gingival blood flow in humans. J Clin Periodontol. 1987;14:418–24.PubMedCrossRefGoogle Scholar
  49. 49.
    Mavropoulos A, Aars H, Brodin P. Hyperaemic response to cigarette smoking in healthy gingiva. J Clin Periodontol. 2003;30:214–21.PubMedCrossRefGoogle Scholar
  50. 50.
    Palmer RM, Scott DA, Meekin TN, Poston RN, Odell EW, Wilson RF. Potential mechanisms of susceptibility to periodontitis in tobacco smokers. J Periodontal Res. 1999;34:363–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Mullally BH. The influence of tobacco smoking on the onset of periodontitis in young persons. Tob Induc Dis. 2004;2:6.PubMedCentralCrossRefGoogle Scholar
  52. 52.
    Meekin TN, Wilson RF, Scott DA, Ide M, Palmer RM. Laser Doppler flowmeter measurement of relative gingival and forehead skin blood flow in light and heavy smokers during and after smoking. J Clin Periodontol. 2000;27:236–42.PubMedCrossRefGoogle Scholar
  53. 53.
    Ketabi M, Hirsch RS. The effects of local anesthetic containing adrenaline on gingival blood flow in smokers and non-smokers. J Clin Periodontol. 1997;24:888–92.PubMedCrossRefGoogle Scholar
  54. 54.
    Yamaguchi K, Nanda RS, Kawata T. Effect of orthodontic forces on blood flow in human gingiva. Angle Orthod. 1991;61:193–204.PubMedGoogle Scholar
  55. 55.
    Yamaguchi K, Nanda RS. Blood flow changes in gingival tissues due to the displacement of teeth. Angle Orthod. 1992;62:257–64.PubMedGoogle Scholar
  56. 56.
    Barta A, Nagy G, Csiki Z, Márton S, Madléna M. Changes in gingival blood flow during orthodontic treatment. Cent Eur J Med. 2010;5:758–65.Google Scholar
  57. 57.
    Canjau S, Miron MI, Todea CD. Laser Doppler flowmetry evaluation of gingival microcirculation recovery in gingivitis. Arch Balkan Med Union. 2015;50(3):354–9.Google Scholar
  58. 58.
    Ramsay DS, Artun J, Martinen SS. Reliability of pulpal blood-flow measurements utilizing laser Doppler flowmetry. J Dent Res. 1991;70:1427–30.  https://doi.org/10.1177/00220345910700110601.CrossRefPubMedGoogle Scholar
  59. 59.
    Cohen ES. Atlas of cosmetic and reconstructive periodontal surgery. 3rd ed. Hamilton: BC Decker Inc.; 2007.Google Scholar
  60. 60.
    Ishikawa I, Aoki A, Takasaki AA. Potential applications of erbium: YAG laser in periodontics. J Periodontal Res. 2004;39:275–85.  https://doi.org/10.1111/j.1600-0765.2004.00738.x.CrossRefPubMedGoogle Scholar
  61. 61.
    Walsh LJ. The current status of laser applications in dentistry. Aust Dent J. 2003;48(3):146–55.  https://doi.org/10.1111/j.1834-7819.2003.tb00025.x.CrossRefPubMedGoogle Scholar
  62. 62.
    Kenneth S, Magid R, Strauss A. Laser use for esthetic soft tissue modification. Dent Clin North Am. 2007;51:525–45.  https://doi.org/10.1016/j.cden.2006.12.005.CrossRefGoogle Scholar
  63. 63.
    Vitez B, Todea C, Velescu A, Şipoş C. Evaluation of gingival vascularisation using laser Doppler flowmetry. Proc. SPIE 9670, sixth international conference on lasers in medicine, 96700J. 2016.  https://doi.org/10.1117/12.2191859.
  64. 64.
    Noditi G, Todea C. Laser Doppler imaging—as a non-invasive method for assessing regional microcirculation when using plastic materials for guided healing. Mater Plast. 2013;1(50):40–3.Google Scholar
  65. 65.
    Fernandes LO, Mota CC, de Melo LS, da Costa Soares MU, da Silva Feitosa D, Gomes AS. In vivo assessment of periodontal structures and measurement of gingival sulcus with optical coherence tomography: a pilot study. J Biophotonics. 2016;10:862.  https://doi.org/10.1002/jbio.201600082. [Epub ahead of print]CrossRefPubMedGoogle Scholar
  66. 66.
    Kao MC, Lin CL, Kung CY, Huang YF, Kuo WC. Miniature endoscopic optical coherence tomography for calculus detection. Appl Opt. 2015;54(24):7419–23.PubMedCrossRefGoogle Scholar
  67. 67.
    Mota CC, Fernandes LO, Cimões R, Gomes AS. Non-invasive periodontal probing through Fourier-domain optical coherence tomography. J Periodontol. 2015 Sep;86(9):1087–94.PubMedCrossRefGoogle Scholar
  68. 68.
    Na J, Lee BH, Baek JH, Choi ES. Optical approach for monitoring the periodontal ligament changes induced by orthodontic forces around maxillary anterior teeth of white rats. Med Biol Eng Comput. 2008;46(6):597–603.PubMedCrossRefGoogle Scholar
  69. 69.
    Baek JH, Na J, Lee BH, Choi E, Son WS. Optical approach to the periodontal ligament under orthodontic tooth movement: a preliminary study with optical coherence tomography. Am J Orthod Dentofac Orthop. 2009;135(2):252–9.CrossRefGoogle Scholar
  70. 70.
    Kaplan EN, Vistnes LM. The Doppler flow meter. Calif Med. 1972;116:57–8.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Atkinson P, Wells PN. Pulse-Doppler ultrasound and its clinical application. Yale J Biol Med. 1977;50:367–73.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Postema M, Gilja OH. Contrast-enhanced and targeted ultrasound. World J Gastroenterol. 2011;17:28–41.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Nimura Y, Matsuo H, Hayashi T, Kitabatake A, Mochizuki S. Studies on arterial flow patterns—instantaneous velocity spectrums and their phasic changes—with directional ultrasonic Doppler technique. Br Heart J. 1974;36:899–907.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Al Turk M, Metcalf WK. A study of superficial palmar arteries using the Doppler ultrasonic flowmeter. J Anat. 1984;138:27–32.Google Scholar
  75. 75.
    Musaeva R, Barmasheva A, Orekchova L. Periodontal condition and microcirculation in patients with different number of metabolic syndrome components [abstract]. J Clin Periodontol. 2012;39.(Suppl. 13s:115.CrossRefGoogle Scholar
  76. 76.
    Krechina EK, Belorukov VV. Artemisia absinthium L. in complex treatment of inflammatory periodontal disease. Stomatologiia (Mosk). 2012;91:22–4. (Russian)Google Scholar
  77. 77.
    Kozlov VA, Artyushenko NK, Shalack OV, Vasiliev AV, Girina MB, Girin II, Morozova EA, Monastirenko AA. Dopplerografiya v ocenke sostoyaniya gemodynamici v tkanyax shei, lica I polosti rta v norme i pri nekotoriх patologicheskix sostoyaniyax. St. Petersburg: Medicinskaya Akademiya poslediplomnogo obrazovaniya; 2000. p. 31.Google Scholar
  78. 78.
    Hynes A, Scott DA, Man A, et al. Molecular mapping of periodontal tissues using infrared microspectroscopy. BMC Med Imaging. 2005;5:2.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Xiang XM, Liu KZ, Man A, et al. Periodontitis-specific molecular signatures in gingival crevicular fluid. J Periodontal Res. 2010;45:345–52.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Xiang X, Sowa MG, Iacopino AM, et al. Review: an update on novel non-invasive approaches for periodontal diagnosis. J Periodontol. 2010;81:186–98.PubMedCrossRefGoogle Scholar
  81. 81.
    Liu KZ, Xiang XM, Man A, et al. In vivo determination of multiple indices of periodontal inflammation by optical spectroscopy. J Periodontal Res. 2009;44:117–24.PubMedCrossRefGoogle Scholar
  82. 82.
    Ge Z, Liu KZ, Xiang X, et al. Assessment of local haemodynamics in periodontal inflammation using optical spectroscopy. J Periodontol. 2011;82:1161–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Burt B, Research, Science and Therapy Committee of the American Academy of Periodontology. Position paper: epidemiology of periodontal diseases. J Periodontol. 2005;76:1406–19.PubMedCrossRefGoogle Scholar
  84. 84.
    Petersen PE, Ogawa H. The global burden of periodontal disease: towards integration with chronic disease prevention and control. Periodontol 2000. 2012;60:15–39.PubMedCrossRefGoogle Scholar
  85. 85.
    Je coat MK, Wang IC, Reddy MS. Radiographic diagnosis in periodontics. Periodontol 2000. 1995;7:54–68.CrossRefGoogle Scholar
  86. 86.
    Park J-Y, Chung J-H, Lee J-S, Kim H-J, Choi S-H, Jung U-W. Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: an ex vivo study. J Periodontal Implant Sci. 2017;47(1):30–40.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Otis LL, Colston BW Jr, Everett MJ, Nathel H. Dental optical coherence tomography: a comparison of two in vitro systems. Dentomaxillofac Radiol. 2000;29:85–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Mota CC, Fernandes LO, Cimões R, Gomes AS. Non-invasive periodontal probing through fourier- domain optical coherence tomography. J Periodontol. 2015;86:1087–94.PubMedCrossRefGoogle Scholar
  89. 89.
    Canjau S, Todea C, Negrutiu ML, Sinescu C, Topala FI, Marcauteanu C, Manescu A, Duma V-F, Bradu A, Podoleanu AGH. Optical coherence tomography for non-invasive ex vivo investigations in dental medicine—a joint group experience (review). Sovremennye tehnologii v medicine. 2015;7(1):97–115.CrossRefGoogle Scholar
  90. 90.
    Brezinski ME, Tearney GJ, Bouma BE, Izatt JA, Hee MR, Swanson EA, et al. Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation. 1996;93:1206–13.PubMedCrossRefGoogle Scholar
  91. 91.
    Boutault F, Cadenat H, Hibert PJ. Evaluation of gingival microcirculation by a laser-Doppler flowmeter. J Craniomaxillofac Surg. 1989;17:105–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Hoke JA, Burkes EJ, White JT, Duffy MB, Klitzman B. Blood-flow mapping of oral tissues by laser Doppler flowmetry. Int J Oral Maxillofac Surg. 1994;23:312–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Sasano T, Shoji N, Kuriwada S, Sanjo D. Calibration of laser Doppler flowmetry for measurement of gingival blood flow. J Periodontal Res. 1995;30:298–301.  https://doi.org/10.1111/j.1600-0765.1995.tb02138.x.CrossRefPubMedGoogle Scholar
  94. 94.
    Karayilmaz H, Kirzioglu Z. Comparison of the reliability of laser Doppler flowmetry, pulse oximetry and electric pulp tester in assessing the pulp vitality of human teeth. J Oral Rehabil. 2011;38(5):340–7.  https://doi.org/10.1111/j.1365-284of2.2010.02160.x.CrossRefPubMedGoogle Scholar
  95. 95.
    Miron MI, Dodenciu D, Saarbescu PF, Filip LM, Balabuc CA, Hanigovski E, Todea DC. Optimization of the laser Doppler signal acquisition technique in pulp vitality tests. Arch Balkan Med Union. 2011;46(4):280–4.Google Scholar
  96. 96.
    Morris SJ, Shore AC. Skin blood flow responses to the iontophoresis of acetylcholine and sodium nitroprusside in man: possible mechanisms. J Physiol. 1996;496:531–42.  https://doi.org/10.1113/jphysiol.1996.sp021704.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Bonner R, Nossal R. Model for laser Doppler measurements of blood flow in tissue. Appl Opt. 1981;20:2097–107.  https://doi.org/10.1364/AO.20.002097.CrossRefPubMedGoogle Scholar
  98. 98.
    Tew GA, Klonizakis M, Crank H, Briers JD, Hodges GJ. Comparison of laser speckle contrast imaging with laser Doppler for assessing microvascular function. Microvasc Res. 2011;82:326–32.  https://doi.org/10.1016/j.mvr.2011.07.007.CrossRefPubMedGoogle Scholar
  99. 99.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG. Optical coherence tomography. Science. 1991;254:1178–81.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Smith PW, Lee K, Guo S, Zhang J, Osann K, Chen Z, Messadi D. In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients. Lasers Surg Med. 2009;41:353–7.CrossRefGoogle Scholar
  101. 101.
    Wang Y, Bower BA, Izatt JA, Tan O, Huang D. Retinalblood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt. 2008;13:064003.  https://doi.org/10.1117/1.2998480.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Pierce MC, Strasswimmer J, Park BH, Cense B, de Boer JF. Birefringence measurements in human skin using polarization-sensitive optical coherence tomography. J Biomed Opt. 2004;9:287–91.PubMedCrossRefGoogle Scholar
  103. 103.
    Clarkson DM. An update on optical coherence tomography in dentistry. Dent Update. 2014;41(2):174–6, 179–80.PubMedCrossRefGoogle Scholar
  104. 104.
    Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology. 2005;112:1734–46.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Brezinski ME, Tearney GJ, Weissman NJ, Boppart SA, Bouma BE, Hee MR, Weyman AE, Swanson EA, Southern JF, Fujimoto JG. Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart. 1997;77:397–403.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Yang XDV, Mao YX, Munce N, Standish B, Kucharczyk W, Marcon NE, Wilson BC, Vitkin IA. Interstitial Doppler optical coherence tomography. Opt Lett. 2005;30:1791–3.PubMedCrossRefGoogle Scholar
  107. 107.
    Pircher M, Goetzinger E, Leitgeb R, Hitzenberger C. Three dimensional polarization sensitive OCT of human skin in vivo. Opt Express. 2004;12:3236–44.PubMedCrossRefGoogle Scholar
  108. 108.
    Pan YT, Xie HK, Fedder GK. Endoscopic optical coherence tomography based on a microelectromechanical mirror. Opt Lett. 2010;26:1966–8.CrossRefGoogle Scholar
  109. 109.
    Lesaffre M, Farahi S, Boccara AC, Ramaz F, Gross M. Theoretical study of acousto-optical coherence tomography using random phase jumps on ultrasound and light. J Opt Soc Am A. 2011;28:1436–44.CrossRefGoogle Scholar
  110. 110.
    Iftimia N, Iyer AK, Hammer DX, Lue N, Mujat M, Pitman M, Ferguson RD, Amiji M. Fluorescence-guided optical coherence tomography imaging for colon cancer screening: a preliminary mouse study. Biomed Opt Express. 2012;3:178–91.PubMedCrossRefGoogle Scholar
  111. 111.
    Colston BW, Everett MJ Jr, da Silva LB, Otis LL, Stroeve P, Nathel H. Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography. Appl Opt. 1998;37:3582–5.PubMedCrossRefGoogle Scholar
  112. 112.
    Drexler W, Fujimoto JG. Optical coherence tomography: technology and applications. Berlin: Springer; 2008.CrossRefGoogle Scholar
  113. 113.
    Hsieh YS, Ho YC, Lee SY, Lu CE, Jiang CP, Chuang CC, Wang CY, Sun CW. Subgingival calculus imaging based on swept-source optical coherence tomography. J Biomed Opt. 2011;16:071409.  https://doi.org/10.1117/1.3602851.CrossRefPubMedGoogle Scholar
  114. 114.
    Xiang X, Sowa MG, Iacopino AM, Maev RG, Hewko MD, Man A, Liu KZ. An update on novel non-invasive approaches for periodontal diagnosis. J Periodontol. 2009;81:186–98.CrossRefGoogle Scholar
  115. 115.
    Hugoson A, Sjödin B, Norderyd O. Trends over 30 years, 1973-2003, in the prevalence and severity of periodontal disease. J Clin Periodontol. 2008;35:405–14.PubMedCrossRefGoogle Scholar
  116. 116.
    Petersen PE. The world oral health report. Geneva: World Health Organization; 2003.Google Scholar
  117. 117.
    Khader YS, Ta’ani Q. Periodontal diseases and the risk of preterm birth and low birth weight: a meta-analysis. J Periodontol. 2005;76:161–5.PubMedCrossRefGoogle Scholar
  118. 118.
    Beck JD, Offenbach S. Systemic effects of periodontitis: epidemiology of periodontal disease and cardiovascular disease. J Periodontol. 2005;76(11-s):2089–100.PubMedCrossRefGoogle Scholar
  119. 119.
    Colston BW, Everett MJ, Silva LBD, Otis LL, Nathel H. Optical coherence tomography for diagnosing periodontal disease. Proc SPIE. 1997;2973:216–20.CrossRefGoogle Scholar
  120. 120.
    Feldchtein F, Gelikonov V, Iksanov R, Gelikonov G, Kuranov R, Sergeev A, Gladkova N, Ourutina M, Reitze D, Warren J. In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express. 1998;3:239–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Carmen Todea
    • 1
  • Silvana Canjau
    • 2
  1. 1.University of Medicine and PharmacyTimisoaraRomania
  2. 2.CoesfeldGermany

Personalised recommendations