Advertisement

Embedding Decision Diagrams into Generative Adversarial Networks

  • Yexiang XueEmail author
  • Willem-Jan van Hoeve
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11494)

Abstract

Many real-world decision-making problems do not possess a clearly defined objective function, but instead aim to find solutions that capture implicit user preferences. This makes it challenging to directly apply classical optimization technology such as integer programming or constraint programming. Machine learning provides an alternative by learning the agents’ decision-making implicitly via neural networks. However, solutions generated by neural networks often fail to satisfy physical or operational constraints. We propose a hybrid approach, DDGan, that embeds a Decision Diagram (DD) into a Generative Adversarial Network (GAN). In DDGan, the solutions generated from the neural network are filtered through a decision diagram module to ensure feasibility. DDGan thus combines the benefits of machine learning and constraint reasoning. When applied to the problem of schedule generation, we demonstrate that DDGan generates schedules that reflect the agents’ implicit preferences, and better satisfy operational constraints.

References

  1. 1.
    Addi, H.A., Bessiere, C., Ezzahir, R., Lazaar, N.: Time-bounded query generator for constraint acquisition. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 1–17. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93031-2_1CrossRefzbMATHGoogle Scholar
  2. 2.
    Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. C–27, 509–516 (1978)CrossRefGoogle Scholar
  3. 3.
    Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74970-7_11CrossRefGoogle Scholar
  4. 4.
    Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, pp. 141–157. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33558-7_13CrossRefGoogle Scholar
  5. 5.
    Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. CoRR abs/1611.09940 (2016). http://arxiv.org/abs/1611.09940
  6. 6.
    Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Decision Diagrams for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms, 1st edn, p. 254. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42849-9CrossRefzbMATHGoogle Scholar
  7. 7.
    Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Artif. Intell. 244, 315–342 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. CoRR abs/1809.11096 (2018)Google Scholar
  9. 9.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C–35, 677–691 (1986)CrossRefGoogle Scholar
  10. 10.
    Cire, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing problems. Oper. Res. 61(6), 1411–1428 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Coletta, R., Bessiere, C., O’Sullivan, B., Freuder, E.C., O’Connell, S., Quinqueton, J.: Constraint acquisition as semi-automatic modeling. In: Coenen, F., Preece, A., Macintosh, A. (eds.) SGAI 2003, pp. 111–124. Springer, London (2004).  https://doi.org/10.1007/978-0-85729-412-8_9CrossRefGoogle Scholar
  12. 12.
    Dai, H., Tian, Y., Dai, B., Skiena, S., Song, L.: Syntax-directed variational autoencoder for structured data. CoRR abs/1802.08786 (2018)Google Scholar
  13. 13.
    Dragone, P., Teso, S., Passerini, A.: Constructive preference elicitation. Front. Robot. AI 4, 71(2018)Google Scholar
  14. 14.
    Galassi, A., Lombardi, M., Mello, P., Milano, M.: Model agnostic solution of CSPs via deep learning: a preliminary study. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 254–262. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93031-2_18CrossRefzbMATHGoogle Scholar
  15. 15.
    Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing System, NIPS 2014, vol. 2, pp. 2672–2680 (2014)Google Scholar
  16. 16.
    Graves, A., et al.: Hybrid computing using a neural network with dynamic external memory. Nature 538(7626), 471–476 (2016)CrossRefGoogle Scholar
  17. 17.
    Hu, Z., Yang, Z., Liang, X., Salakhutdinov, R., Xing, E.P.: Toward controlled generation of text. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1587–1596 (2017)Google Scholar
  18. 18.
    Hu, Z., et al.: Deep generative models with learnable knowledge constraints. CoRR abs/1806.09764 (2018)Google Scholar
  19. 19.
    Jin, W., Barzilay, R., Jaakkola, T.S.: Junction tree variational autoencoder for molecular graph generation. In: ICML (2018)Google Scholar
  20. 20.
    Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization algorithms over graphs. In: Advances in Neural Information Processing Systems, pp. 6348–6358 (2017)Google Scholar
  21. 21.
    Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoencoder. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1945–1954 (2017)Google Scholar
  22. 22.
    Lallouet, A., Legtchenko, A.: Building consistencies for partially defined constraints with decision trees and neural networks. Int. J. Artif. Intell. Tools 16(4), 683–706 (2007)CrossRefGoogle Scholar
  23. 23.
    Lallouet, A., Lopez, M., Marti, L., Vrain, C.: On learning constraint problems. In: Proceedings of IJCAI, pp. 45–52 (2010)Google Scholar
  24. 24.
    Lombardi, M., Milano, M.: Boosting combinatorial problem modeling with machine learning. In: Proceedings of IJCAI, pp. 5472–5478 (2018)Google Scholar
  25. 25.
    Lombardi, M., Milano, M., Bartolini, A.: Empirical decision model learning. Artif. Intell. 244, 343–367 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lombardi, M., Gualandi, S.: A Lagrangian propagator for artificial neural networks in constraint programming. Constraints 21(4), 435–462 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mirza, M., Osindero, S.: Conditional generative adversarial nets. CoRR abs/1411.1784 (2014)Google Scholar
  28. 28.
    Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR abs/1511.06434 (2015)Google Scholar
  29. 29.
    Teso, S., Sebastiani, R., Passerini, A.: Structured learning modulo theories. Artif. Intell. 244, 166–187 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, pp. 2692–2700 (2015)Google Scholar
  31. 31.
    Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer SciencePurdue UniversityWest LafayetteUSA
  2. 2.Tepper School of BusinessCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations