Advertisement

Building Optimal Steiner Trees on Supercomputers by Using up to 43,000 Cores

  • Yuji ShinanoEmail author
  • Daniel Rehfeldt
  • Thorsten Koch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11494)

Abstract

SCIP-Jack is a customized, branch-and-cut based solver for Steiner tree and related problems. ug [SCIP-Jack, MPI] extends SCIP-Jack to a massively parallel solver by using the Ubiquity Generator (UG) framework. ug [SCIP-Jack, MPI] was the only solver that could run on a distributed environment at the (latest) 11th DIMACS Challenge in 2014. Furthermore, it could solve three well-known open instances and updated 14 best known solutions to instances from the benchmark library SteinLib. After the DIMACS Challenge, SCIP-Jack has been considerably improved. However, the improvements were not reflected on ug [SCIP-Jack, MPI]. This paper describes an updated version of ug [SCIP-Jack, MPI], especially branching on constrains and a customized racing ramp-up. Furthermore, the different stages of the solution process on a supercomputer are described in detail. We also show the latest results on open instances from the SteinLib.

Keywords

Steiner tree problem Branch-and-cut Parallel computing SCIP UG 

Notes

Acknowledgements

The authors would like to thank Utz-Uwe Haus for his help in tracking down a particularly insistent bug. This work has been supported by the Research Campus MODAL Mathematical Optimization and Data Analysis Laboratories funded by the Federal Ministry of Education and Research (BMBF Grant 05M14ZAM). This work was also supported by the North-German Supercomputing Alliance (HLRN). Supported by BMWi project BEAM-ME (fund number 03ET4023DE).

References

  1. 1.
    PACE Challenge 2018. https://pacechallenge.wordpress.com/pace-2018/. Accessed 10 Nov 2018
  2. 2.
    Gamrath, G., Koch, T., Maher, S., Rehfeldt, D., Shinano, Y.: SCIP-Jack—a solver for STP and variants with parallelization extensions. Math. Program. Comput. 9(2), 231–296 (2017).  https://doi.org/10.1007/s12532-016-0114-xMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gleixner, A., et al.: The SCIP optimization suite 6.0. Technical report, 18–26, ZIB, Takustr. 7, 14195 Berlin (2018)Google Scholar
  4. 4.
    Hwang, F., Richards, D., Winter, P.: The Steiner tree problem. Ann. Discret. Math. 53, 336 (1992)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)Google Scholar
  6. 6.
    Koch, T., et al.: MIPLIB 2010. Math. Program. Comput. 3, 103–163 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Koch, T., Martin, A., Voß, S.: SteinLib: an updated library on Steiner tree problems in graphs. In: Du, D.Z., Cheng, X. (eds.) Steiner Trees in Industries, pp. 285–325. Kluwer (2001)Google Scholar
  8. 8.
    Maher, S.J., et al.: The SCIP optimization suite 4.0. Technical report 17–12, ZIB, Takustr. 7, 14195 Berlin (2017)Google Scholar
  9. 9.
    Polzin, T.: Algorithms for the Steiner problem in networks. Ph.D. thesis, Saarland University (2004). http://scidok.sulb.uni-saarland.de/volltexte/2004/218/index.html
  10. 10.
    Ralphs, T., Shinano, Y., Berthold, T., Koch, T.: Parallel solvers for mixed integer linear optimization. Handbook of Parallel Constraint Reasoning, pp. 283–336. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-63516-3_8CrossRefGoogle Scholar
  11. 11.
    Rehfeldt, D., Koch, T.: Combining NP-hard reduction techniques and strong heuristics in an exact algorithm for the maximum-weight connected subgraph problem. SIAM J. Optim. 29(1), 369–398 (2019).  https://doi.org/10.1137/17M1145963MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rehfeldt, D., Koch, T.: Reduction-based exact solution of prize-collecting Steiner tree problems. Technical report 18–55, ZIB, Takustr. 7, 14195 Berlin (2018)Google Scholar
  13. 13.
    Rehfeldt, D., Koch, T.: SCIP-Jack—a solver for STP and variants with parallelization extensions: an update. In: Kliewer, N., Ehmke, J.F., Borndörfer, R. (eds.) Operations Research Proceedings 2017. ORP, pp. 191–196. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-89920-6_27CrossRefGoogle Scholar
  14. 14.
    Rehfeldt, D., Koch, T.: Transformations for the prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem to SAP. J. Comput. Math. 36(3), 459–468 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rehfeldt, D., Koch, T., Maher, S.J.: Reduction techniques for the prize collecting Steiner tree problem and the maximum-weight connected subgraph problem. Networks 73(2), 206–233 (2019).  https://doi.org/10.1002/net.2185. https://onlinelibrary.wiley.com/doi/abs/10.1002/net.21857MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Shinano, Y.: The ubiquity generator framework: 7 years of progress in parallelizing branch-and-bound. In: Kliewer, N., Ehmke, J.F., Borndörfer, R. (eds.) Operations Research Proceedings 2017. ORP, pp. 143–149. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-89920-6_20CrossRefGoogle Scholar
  17. 17.
    Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T., Winkler, M.: Solving hard MIPLIP2003 problems with ParaSCIP on supercomputers: an update. In: IEEE (ed.) IPDPSW 2014 Proceedings of the 2014 IEEE, International Parallel & Distributed Processing Symposium Workshops, pp. 1552–1561 (2014).  https://doi.org/10.1109/IPDPSW.2014.174
  18. 18.
    Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T., Winkler, M.: Solving open mip instances with ParaSCIP on supercomputers using up to 80,000 cores. In: Proceedings of 30th IEEE International Parallel & Distributed Processing Symposium (2016).  https://doi.org/10.1109/IPDPS.2016.56
  19. 19.
    Shinano, Y., Berthold, T., Heinz, S.: A first implementation of ParaXpress: combining internal and external parallelization to solve MIPs on supercomputers. In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 308–316. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42432-3_38CrossRefGoogle Scholar
  20. 20.
    Shinano, Y., Heinz, S., Vigerske, S., Winkler, M.: FiberSCIP - a shared memory parallelization of SCIP. INFORMS J. Comput. 30(1), 11–30 (2018).  https://doi.org/10.1287/ijoc.2017.0762MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.TU BerlinBerlinGermany
  2. 2.Zuse Institute BerlinBerlinGermany

Personalised recommendations