Advertisement

Heat Exchanger Circuitry Design by Decision Diagrams

  • Nikolaos Ploskas
  • Christopher Laughman
  • Arvind U. Raghunathan
  • Nikolaos V. SahinidisEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11494)

Abstract

The interconnection pattern between the tubes of a tube-fin heat exchanger, also referred to as its circuitry, has a significant impact on its performance. We can improve the performance of a heat exchanger by identifying optimized circuitry designs. This task is difficult because the number of possible circuitries is very large, and because the dependence of the heat exchanger performance on the input (i.e., a given circuitry) is highly discontinuous and nonlinear. In this paper, we propose a novel decision diagram formulation and present computational results using the mixed integer programming solver CPLEX. The results show that the proposed approach has a favorable scaling with respect to number of tubes in the heat exchanger size and produces configurations with 9% higher heat capacity, on average, than the baseline configuration.

Keywords

Optimization Decision diagram Heat exchanger design Refrigerant circuitry Heat capacity 

References

  1. 1.
    Ploskas, N., Laughman, C., Raghunathan, A.U., Sahinidis, N.V.: Optimization of circuitry arrangements for heat exchangers using derivative-free optimization. Chem. Eng. Res. Des. 131, 16–28 (2018).  https://doi.org/10.1016/j.cherd.2017.05.015CrossRefGoogle Scholar
  2. 2.
    Hewitt, G.F., Shires, G.L., Bott, T.R.: Process Heat Transfer, vol. 113. CRC Press, Boca Raton (1994)Google Scholar
  3. 3.
    Fax, D.H., Mills, R.R.: Generalized optimal heat exchanger design. ASME Trans. 79, 653–661 (1957)Google Scholar
  4. 4.
    Hedderich, C.P., Kelleher, M.D., Vanderplaats, G.N.: Design and optimization of air-cooled heat exchangers. J. Heat Transfer 104, 683–690 (1982)CrossRefGoogle Scholar
  5. 5.
    Liang, S.Y., Wong, T.N., Nathan, G.K.: Study on refrigerant circuitry of condenser coils with exergy destruction analysis. Appl. Therm. Eng. 20, 559–577 (2000).  https://doi.org/10.1016/s1359-4311(99)00043-5CrossRefGoogle Scholar
  6. 6.
    Wang, C.C., Jang, J.Y., Lai, C.C., Chang, Y.J.: Effect of circuit arrangement on the performance of air-cooled condensers. Int. J. Refrig. 22, 275–282 (1999).  https://doi.org/10.1016/s0140-7007(98)00065-6CrossRefGoogle Scholar
  7. 7.
    Yun, J.Y., Lee, K.S.: Influence of design parameters on the heat transfer and flow friction characteristics of the heat exchanger with slit fins. Int. J. Heat Mass Transf. 43, 2529–2539 (2000).  https://doi.org/10.1016/s0017-9310(99)00342-7CrossRefzbMATHGoogle Scholar
  8. 8.
    Liang, S.Y., Wong, T.N., Nathan, G.K.: Numerical and experimental studies of refrigerant circuitry of evaporator coils. Int. J. Refrig. 24, 823–833 (2001).  https://doi.org/10.1016/s0140-7007(00)00050-5CrossRefGoogle Scholar
  9. 9.
    Matos, R.S., Laursen, T.A., Vargas, J.V.C., Bejan, A.: Three-dimensional optimization of staggered finned circular and elliptic tubes in forced convection. Int. J. Therm. Sci. 43, 477–487 (2004).  https://doi.org/10.1016/j.ijthermalsci.2003.10.003CrossRefzbMATHGoogle Scholar
  10. 10.
    Domanski, P.A., Yashar, D., Kim, M.: Performance of a finned-tube evaporator optimized for different refrigerants and its effect on system efficiency. Int. J. Refrig. 28, 820–827 (2005).  https://doi.org/10.1016/j.ijrefrig.2005.02.003CrossRefGoogle Scholar
  11. 11.
    Domanski, P.A., Yashar, D., Kaufman, K.A., Michalski, R.S.: An optimized design of finned-tube evaporators using the learnable evolution model. HVAC&R Res. 10, 201–211 (2004).  https://doi.org/10.1080/10789669.2004.10391099CrossRefGoogle Scholar
  12. 12.
    Domanski, P.A., Yashar, D.: Optimization of finned-tube condensers using an intelligent system. Int. J. Refrig. 30, 482–488 (2007).  https://doi.org/10.1016/j.ijrefrig.2006.08.013CrossRefGoogle Scholar
  13. 13.
    Wu, Z., Ding, G., Wang, K., Fukaya, M.: Application of a genetic algorithm to optimize the refrigerant circuit of fin-and-tube heat exchangers for maximum heat transfer or shortest tube. Int. J. Therm. Sci. 47, 985–997 (2008).  https://doi.org/10.1016/j.ijthermalsci.2007.08.005CrossRefGoogle Scholar
  14. 14.
    Bendaoud, A.L., Ouzzane, M., Aidoun, Z., Galanis, N.: A new modeling procedure for circuit design and performance prediction of evaporator coils using CO2 as refrigerant. Appl. Energy 87, 2974–2983 (2010).  https://doi.org/10.1016/j.apenergy.2010.04.015CrossRefGoogle Scholar
  15. 15.
    Lee, W.J., Kim, H.J., Jeong, J.H.: Method for determining the optimum number of circuits for a fin-tube condenser in a heat pump. Int. J. Heat Mass Transf. 98, 462–471 (2016).  https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.094CrossRefGoogle Scholar
  16. 16.
    Yashar, D.A., Lee, S., Domanski, P.A.: Rooftop air-conditioning unit performance improvement using refrigerant circuitry optimization. Appl. Therm. Eng. 83, 81–87 (2015).  https://doi.org/10.1016/j.applthermaleng.2015.03.012CrossRefGoogle Scholar
  17. 17.
    Cen, J., Hu, J., Jiang, F.: An automatic refrigerant circuit generation method for finned-tube heat exchangers. Can. J. Chem. Eng. (2018).  https://doi.org/10.1002/cjce.23150CrossRefGoogle Scholar
  18. 18.
    Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74970-7_11CrossRefGoogle Scholar
  19. 19.
    Behle, M.: Binary decision diagrams and integer programming. Ph.D. thesis, Saarland University (2007)Google Scholar
  20. 20.
    Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016).  https://doi.org/10.1287/ijoc.2015.0648MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Decision Diagrams for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms, 1st edn. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42849-9CrossRefzbMATHGoogle Scholar
  22. 22.
    Bergman, D., Cire, A.A.: Discrete nonlinear optimization by state-space decompositions. Manage. Sci. 64(10), 4700–4720 (2017).  https://doi.org/10.1287/mnsc.2017.2849CrossRefGoogle Scholar
  23. 23.
    Cire, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing problems. Oper. Res. 61(6), 1411–1428 (2013).  https://doi.org/10.1287/opre.2013.1221MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Davarnia, D., van Hoeve, W.J.: Outer approximation for integer nonlinear programs via decision diagrams (2018). http://www.optimization-online.org/DB_HTML/2018/03/6512.html
  25. 25.
    Haus, U.U., Michini, C., Laumanns, M.: Scenario aggregation using binary decision diagrams for stochastic programs with endogenous uncertainty. CoRR abs/1701.04055, https://arxiv.org/abs/1701.04055 (2017)
  26. 26.
    Hooker, J.N.: Decision diagrams and dynamic programming. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 94–110. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38171-3_7CrossRefGoogle Scholar
  27. 27.
    Lozano, L., Smith, J.C.: A binary decision diagram based algorithm for solving a class of binary two-stage stochastic programs. Math. Program. (2018).  https://doi.org/10.1007/s10107-018-1315-z
  28. 28.
    Morrison, D.R., Sewell, E.C., Jacobson, S.H.: Solving the pricing problem in a branch-and-price algorithm for graph coloring using zero-suppressed binary decision diagrams. INFORMS J. Comput. 28(1), 67–82 (2016).  https://doi.org/10.1287/ijoc.2015.0667MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Raghunathan, A.U., Bergman, D., Hooker, J.N., Serra, T., Kobori, S.: Seamless multimodal transportation scheduling. CoRR abs/1807.09676 https://arxiv.org/abs/1807.09676 (2018)
  30. 30.
    Serra, T., Hooker, J.N.: Compact representation of near-optimal integer programming solutions (2017). http://www.optimization-online.org/DB_HTML/2017/09/6234.html
  31. 31.
    Tjandraatmadja C., van Hoeve, W.J.: Target cuts from relaxed decision diagrams. INFORMS J. Comput. (2018, to appear)Google Scholar
  32. 32.
    Jiang, H., Aute, V., Radermacher, R.: CoilDesigner: a general-purpose simulation and design tool for air-to-refrigerant heat exchangers. Int. J. Refrig. 29, 601–610 (2006).  https://doi.org/10.1016/j.ijrefrig.2005.09.019CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Informatics and Telecommunications EngineeringUniversity of Western MacedoniaKozaniGreece
  2. 2.Mitsubishi Electric Research LaboratoriesCambridgeUSA
  3. 3.Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations