Advertisement

A New CP-Approach for a Parallel Machine Scheduling Problem with Time Constraints on Machine Qualifications

  • Arnaud Malapert
  • Margaux NattafEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11494)

Abstract

This paper considers the scheduling of job families on parallel machines with time constraints on machine qualifications. In this problem, each job belongs to a family and a family can only be executed on a subset of qualified machines. In addition, machines can lose their qualifications during the schedule. Indeed, if no job of a family is scheduled on a machine during a given amount of time, the machine loses its qualification for this family. The goal is to minimize the sum of job completion times, i.e. the flow time, while maximizing the number of qualifications at the end of the schedule. The paper presents a new Constraint Programming (CP) model taking more advantages of the CP feature to model machine disqualifications. This model is compared with two existing models: an Integer Linear Programming (ILP) model and a Constraint Programming model. The experiments show that the new CP model outperforms the other model when the priority is given to the number of disqualifications objective. Furthermore, it is competitive with the other model when the flow time objective is prioritized.

Keywords

Parallel machine scheduling Time constraint Machine qualifications Integer Linear Programming Constraint Programming 

References

  1. 1.
    Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog (revision a), January 2012Google Scholar
  2. 2.
    Cai, Y., Kutanoglu, E., Hasenbein, J., Qin, J.: Single-machine scheduling with advanced process control constraints. J. Sched. 15(2), 165–179 (2012).  https://doi.org/10.1007/s10951-010-0215-8MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    IBM: IBM ILOG CPLEX Optimization Studio (2019). https://www.ibm.com/products/ilog-cplex-optimization-studio
  4. 4.
    Jedidi, N., Sallagoity, P., Roussy, A., Dauzère-Pérès, S.: Feedforward run-to-run control for reduced parametric transistor variation in CMOS logic 0.13 \(\upmu {\rm m}\) technology. IEEE Trans. Semicond. Manufact. 24(2), 273–279 (2011)Google Scholar
  5. 5.
    Laborie, P., Rogerie, J.: Reasoning with conditional time-intervals. In: Proceedings of the Twenty-First International Florida Artificial Intelligence Research Society Conference, Coconut Grove, Florida, USA, 15–17 May 2008, pp. 555–560 (2008). http://www.aaai.org/Library/FLAIRS/2008/flairs08-126.php
  6. 6.
    Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: Reasoning with conditional time-intervals. Part II: an algebraical model for resources. In: Proceedings of the Twenty-Second International Florida Artificial Intelligence Research Society Conference, Sanibel Island, Florida, USA, 19–21 May 2009 (2009). http://aaai.org/ocs/index.php/FLAIRS/2009/paper/view/60
  7. 7.
    Li, L., Qiao, F.: The impact of the qual-run requirements of APC on the scheduling performance in semiconductor manufacturing. In: Proceedings of 2008 IEEE International Conference on Automation Science and Engineering(CASE), pp. 242–246 (2008)Google Scholar
  8. 8.
    Moench, L., Fowler, J.W., Dauzère-Pérès, S., Mason, S.J., Rose, O.: A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations. J. Sched. 1–17 (2011).  https://doi.org/10.1007/s10951-010-0222-9
  9. 9.
    Moyne, J., del Castillo, E., Hurwitz, A.M.: Run-to-Run Control in Semiconductor Manufacturing, 1st edn. CRC Press, Boca Raton (2000)Google Scholar
  10. 10.
    Musacchio, J., Rangan, S., Spanos, C., Poolla, K.: On the utility of run to run control in semiconductor manufacturing. In: Proceedings of 1997 IEEE International Symposium on Semiconductor Manufacturing Conference, pp. 9–12 (1997)Google Scholar
  11. 11.
    Nattaf, M., Dauzère-Pérès, S., Yugma, C., Wu, C.H.: Parallel machine scheduling with time constraints on machine qualifications, Manuscript submitted for publicationGoogle Scholar
  12. 12.
    Nattaf, M., Obeid, A., Dauzère-Pérès, S., Yugma, C.: Méthodes de résolution pour l’ordonnancement de familles de tâches sur machines parallèles et avec contraintes de temps. In: 19ème édition du congrès annuel de la Société Française de Recherche Opérationnelle et d’Aide à la Décision, ROADEF2018Google Scholar
  13. 13.
    Obeid, A., Dauzère-Pérès, S., Yugma, C.: Scheduling job families on non-identical parallel machines with time constraints. Ann. Oper. Res. 213(1), 221–234 (2014).  https://doi.org/10.1007/s10479-012-1107-4MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Tan, F., Pan, T., Li, Z., Chen, S.: Survey on run-to-run control algorithms in high-mix semiconductor manufacturing processes. IEEE Trans. Ind. Inform. 11(6), 1435–1444 (2015)CrossRefGoogle Scholar
  15. 15.
    Wolf, A.: Constraint-based task scheduling with sequence dependent setup times, time windows and breaks. GI Jahrestagung 154, 3205–3219 (2009)Google Scholar
  16. 16.
    Yugma, C., Blue, J., Dauzère-Pérès, S., Obeid, A.: Integration of scheduling and advanced process control in semiconductor manufacturing: review and outlook. J. Sched. 18(2), 195–205 (2015).  https://doi.org/10.1007/s10951-014-0381-1MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université Côte d’Azur, CNRS, I3SSophia AntipolisFrance
  2. 2.Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOPGrenobleFrance

Personalised recommendations