Advertisement

Evaluating Ising Processing Units with Integer Programming

  • Carleton CoffrinEmail author
  • Harsha Nagarajan
  • Russell Bent
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11494)

Abstract

The recent emergence of novel computational devices, such as adiabatic quantum computers, CMOS annealers, and optical parametric oscillators, present new opportunities for hybrid-optimization algorithms that are hardware accelerated by these devices. In this work, we propose the idea of an Ising processing unit as a computational abstraction for reasoning about these emerging devices. The challenges involved in using and benchmarking these devices are presented and commercial mixed integer programming solvers are proposed as a valuable tool for the validation of these disparate hardware platforms. The proposed validation methodology is demonstrated on a D-Wave 2X adiabatic quantum computer, one example of an Ising processing unit. The computational results demonstrate that the D-Wave hardware consistently produces high-quality solutions and suggests that as IPU technology matures it could become a valuable co-processor in hybrid-optimization algorithms.

Keywords

Discrete optimization Ising model Quadratic unconstrained binary optimization Integer programming Large Neighborhood Search Adiabatic quantum computation 

References

  1. 1.
    Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011)CrossRefGoogle Scholar
  2. 2.
    International Business Machines Corporation: IBM building first universal quantum computers for business and science (2017). https://www-03.ibm.com/press/us/en/pressrelease/51740.wss. Accessed 28 Apr 2017
  3. 3.
    Mohseni, M., et al.: Commercialize quantum technologies in five years. Nature 543, 171–174 (2017)CrossRefGoogle Scholar
  4. 4.
    Chmielewski, M., et al.: Cloud-based trapped-ion quantum computing. In: APS Meeting Abstracts (2018)Google Scholar
  5. 5.
    Yamaoka, M., Yoshimura, C., Hayashi, M., Okuyama, T., Aoki, H., Mizuno, H.: 24.3 20k-spin Ising chip for combinational optimization problem with CMOS annealing. In: 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, pp. 1–3, February 2015Google Scholar
  6. 6.
    Yoshimura, C., Yamaoka, M., Aoki, H., Mizuno, H.: Spatial computing architecture using randomness of memory cell stability under voltage control. In: 2013 European Conference on Circuit Theory and Design (ECCTD), pp. 1–4, September 2013Google Scholar
  7. 7.
    Fujitsu: Digital annealer, May 2018. http://www.fujitsu.com/global/digitalannealer/. Accessed 26 Feb 2019
  8. 8.
    Modha, D.S.: Introducing a brain-inspired computer (2017). http://www.research.ibm.com/articles/brain-chip.shtml. Accessed 28 Apr 2017
  9. 9.
    Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018)CrossRefGoogle Scholar
  10. 10.
    Schuman, C.D., et al.: A survey of neuromorphic computing and neural networks in hardware (2017). arXiv preprint: arXiv:1705.06963
  11. 11.
    Caravelli, F.: Asymptotic behavior of memristive circuits and combinatorial optimization (2017)Google Scholar
  12. 12.
    Traversa, F.L., Di Ventra, M.: MemComputing integer linear programming (2018)Google Scholar
  13. 13.
    McMahon, P.L., et al.: A fully-programmable 100-spin coherent Ising machine with all-to-all connections. Science 354, 614–617 (2016).  https://doi.org/10.1126/science.aah5178MathSciNetCrossRefGoogle Scholar
  14. 14.
    Inagaki, T., et al.: A coherent Ising machine for 2000-node optimization problems. Science 354(6312), 603–606 (2016)CrossRefGoogle Scholar
  15. 15.
    Kielpinski, D., et al.: Information processing with large-scale optical integrated circuits. In: 2016 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–4, October 2016Google Scholar
  16. 16.
    Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Brush, S.G.: History of the lenz-ising model. Rev. Mod. Phys. 39, 883–893 (1967)CrossRefGoogle Scholar
  18. 18.
    D-Wave Systems Inc.: Customers (2017). https://www.dwavesys.com/our-company/customers. Accessed 28 Apr 2017
  19. 19.
    Haribara, Y., Utsunomiya, S., Yamamoto, Y.: A coherent Ising machine for MAX-CUT problems: performance evaluation against semidefinite programming and simulated annealing. In: Yamamoto, Y., Semba, K. (eds.) Principles and Methods of Quantum Information Technologies. LNP, vol. 911, pp. 251–262. Springer, Tokyo (2016).  https://doi.org/10.1007/978-4-431-55756-2_12CrossRefGoogle Scholar
  20. 20.
    Lucas, A.: Ising formulations of many NP problems. Frontiers Phys. 2, 5 (2014)CrossRefGoogle Scholar
  21. 21.
    Bian, Z., Chudak, F., Israel, R.B., Lackey, B., Macready, W.G., Roy, A.: Mapping constrained optimization problems to quantum annealing with application to fault diagnosis. Frontiers ICT 3, 14 (2016)CrossRefGoogle Scholar
  22. 22.
    Bian, Z., Chudak, F., Israel, R., Lackey, B., Macready, W.G., Roy, A.: Discrete optimization using quantum annealing on sparse Ising models. Frontiers Phys. 2, 56 (2014)CrossRefGoogle Scholar
  23. 23.
    Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E.M., Smelyanskiy, V.N.: A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf. Process. 14(1), 1–36 (2015)CrossRefGoogle Scholar
  24. 24.
    Venturelli, D., Marchand, D.J.J., Rojo, G.: Quantum annealing implementation of job-shop scheduling (2015)Google Scholar
  25. 25.
    de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving Max-SAT as weighted CSP. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 363–376. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45193-8_25CrossRefGoogle Scholar
  26. 26.
    Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and core-guided maxsat solving: a survey and assessment. Constraints 18(4), 478–534 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    McGeoch, C.C., Wang, C.: Experimental evaluation of an adiabiatic quantum system for combinatorial optimization. In: Proceedings of the ACM International Conference on Computing Frontiers, CF 2013, pp. 23:1–23:11. ACM (2013)Google Scholar
  28. 28.
    Nieuwenhuis, R.: The IntSat method for integer linear programming. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 574–589. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10428-7_42CrossRefGoogle Scholar
  29. 29.
    Zdeborova, L., Krzakala, F.: Statistical physics of inference: thresholds and algorithms. Adv. Phys. 65(5), 453–552 (2016)CrossRefGoogle Scholar
  30. 30.
    Bian, Z., Chudak, F., Macready, W.G., Rose, G.: The Ising model: teaching an old problem new tricks (2010). https://www.dwavesys.com/sites/default/files/weightedmaxsat_v2.pdf. Accessed 28 Apr 2017
  31. 31.
    Benedetti, M., Realpe-Gómez, J., Biswas, R., Perdomo-Ortiz, A.: Estimation of effective temperatures in quantum annealers for sampling applications: a case study with possible applications in deep learning. Phys. Rev. A 94, 022308 (2016)CrossRefGoogle Scholar
  32. 32.
    Boixo, S., et al.: Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10(3), 218–224 (2014)CrossRefGoogle Scholar
  33. 33.
    Denchev, V.S., et al.: What is the computational value of finite-range tunneling? Phys. Rev. X 6, 031015 (2016)Google Scholar
  34. 34.
    King, J., Yarkoni, S., Nevisi, M.M., Hilton, J.P., McGeoch, C.C.: Benchmarking a quantum annealing processor with the time-to-target metric (2015). arXiv preprint: arXiv:1508.05087
  35. 35.
    Boothby, T., King, A.D., Roy, A.: Fast clique minor generation in chimera qubit connectivity graphs. Quantum Inf. Process. 15(1), 495–508 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors (2014)Google Scholar
  37. 37.
    Klymko, C., Sullivan, B.D., Humble, T.S.: Adiabatic quantum programming: minor embedding with hard faults. Quantum Inf. Process. 13(3), 709–729 (2014)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Koch, T., et al.: MIPLIB 2010: mixed integer programming library version 5. Math. Program. Comput. 3(2), 103–163 (2011)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Gent, I.P., Walsh, T.: CSPLib: a benchmark library for constraints. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 480–481. Springer, Heidelberg (1999).  https://doi.org/10.1007/978-3-540-48085-3_36CrossRefGoogle Scholar
  40. 40.
    Hoos, H.H., Stutzle, T.: SATLIB: An online resource for research on SAT (2000)Google Scholar
  41. 41.
    Coffrin, C., Nagarajan, H., Bent, R.: Challenges and successes of solving binary quadratic programming benchmarks on the DW2X QPU. Technical report, Los Alamos National Laboratory (LANL) (2016)Google Scholar
  42. 42.
    Hen, I., Job, J., Albash, T., Rønnow, T.F., Troyer, M., Lidar, D.A.: Probing for quantum speedup in spin-glass problems with planted solutions. Phys. Rev. A 92, 042325 (2015)CrossRefGoogle Scholar
  43. 43.
    King, J., et al.: Quantum annealing amid local ruggedness and global frustration (2017)Google Scholar
  44. 44.
    Mandrà, S., Zhu, Z., Wang, W., Perdomo-Ortiz, A., Katzgraber, H.G.: Strengths and weaknesses of weak-strong cluster problems: a detailed overview of state-of-the-art classical heuristics versus quantum approaches. Phys. Rev. A 94, 022337 (2016)CrossRefGoogle Scholar
  45. 45.
    Mandrà, S., Katzgraber, H.G., Thomas, C.: The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again) (2017)Google Scholar
  46. 46.
    Aaronson, S.: D-wave: Truth finally starts to emerge, May 2013. http://www.scottaaronson.com/blog/?p=1400. Accessed 28 Apr 2017
  47. 47.
    Aaronson, S.: Insert d-wave post here, March 2017. http://www.scottaaronson.com/blog/?p=3192. Accessed 28 Apr 2017
  48. 48.
    King, A.D., Lanting, T., Harris, R.: Performance of a quantum annealer on range-limited constraint satisfaction problems (2015). arXiv preprint: arXiv:1502.02098
  49. 49.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Hamze, F., de Freitas, N.: From fields to trees. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI 2004, Arlington, Virginia, United States, pp. 243–250. AUAI Press (2004)Google Scholar
  51. 51.
    Selby, A.: Efficient subgraph-based sampling of Ising-type models with frustration (2014)Google Scholar
  52. 52.
    Selby, A.: Qubo-chimera (2013). https://github.com/alex1770/QUBO-Chimera
  53. 53.
    Puget, J.F.: D-wave vs cplex comparison. Part 2: Qubo (2013). https://www.ibm.com/developerworks/community/blogs/jfp/entry/d_wave_vs_cplex_comparison_part_2_qubo. Accessed 28 Nov 2018
  54. 54.
    Dash, S.: A note on qubo instances defined on chimera graphs (2013). arXiv preprint: arXiv:1306.1202
  55. 55.
    Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0-1 problem. Math. Program. 109(1), 55–68 (2007)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution (2018)Google Scholar
  57. 57.
    Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355–5363 (1998)CrossRefGoogle Scholar
  58. 58.
    Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Nightingale, M.P., Umrigar, C.J. (eds.): Quantum Monte Carlo Methods in Physics and Chemistry. Nato Science Series C, vol. 525. Springer, Netherlands (1998)zbMATHGoogle Scholar
  60. 60.
    Parekh, O., Wendt, J., Shulenburger, L., Landahl, A., Moussa, J., Aidun, J.: Benchmarking adiabatic quantum optimization for complex network analysis (2015)Google Scholar
  61. 61.
    IBM ILOG CPLEX Optimizer. https://www.ibm.com/analytics/cplex-optimizer. Accessed 2010
  62. 62.
    Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2014). http://www.gurobi.com
  63. 63.
    D-Wave Systems Inc.: The D-wave 2X quantum computer technology overview (2015). https://www.dwavesys.com/sites/default/files/D-Wave%202X%20Tech%20Collateral_0915F.pdf. Accessed 28 Apr 2017
  64. 64.
    Vuffray, M., Misra, S., Lokhov, A., Chertkov, M.: Interaction screening: efficient and sample-optimal learning of Ising models. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29, pp. 2595–2603. Curran Associates, Inc. (2016)Google Scholar
  65. 65.
    Lokhov, A.Y., Vuffray, M., Misra, S., Chertkov, M.: Optimal structure and parameter learning of Ising models (2016)Google Scholar
  66. 66.
    Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of sat problems. In: Proceedings of the Tenth National Conference on Artificial Intelligence, AAAI 1992, pp. 459–465. AAAI Press (1992)Google Scholar
  67. 67.
    Balyo, T., Heule, M.J.H., Jarvisalo, M.: Sat competition 2016: recent developments. In: Proceedings of the Thirty-First National Conference on Artificial Intelligence, AAAI 2017, pp. 5061–5063. AAAI Press (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carleton Coffrin
    • 1
    Email author
  • Harsha Nagarajan
    • 1
  • Russell Bent
    • 1
  1. 1.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations