Advertisement

One Constraint to Kill Them All?

  • Matthew John KirkEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

As we have discussed in Sect. 1.3.4, there are many intriguing anomalies in the Open image in new window quark sector, for which a variety of possible classes of new physics model have been proposed. However, any new Open image in new window -coupling immediately gives tree-level contributions to Open image in new window mixing, which is strongly constrained by experiment.

References

  1. 1.
    Lenz A, Nierste U (2011) Numerical updates of lifetimes and mixing parameters of B mesons. In: CKM unitarity triangle. Proceedings, 6th International Workshop, CKM 2010, Warwick, UK, September 6–10, 2010. arXiv:1102.4274, http://inspirehep.net/record/890169/files/arXiv:1102.4274.pdf
  2. 2.
    Artuso M, Borissov G, Lenz A (2016) CP violation in the \(B_s^0\) system. Rev Mod Phys 88:045002.  https://doi.org/10.1103/RevModPhys.88.045002, arXiv:1511.09466
  3. 3.
    HFLAV collaboration, Amhis Y et al (2017) Averages of \(b\)-hadron, \(c\)-hadron, and \(\tau \)-lepton properties as of summer 2016. Eur Phys J C 77:895.  https://doi.org/10.1140/epjc/s10052-017-5058-4, arXiv:1612.07233
  4. 4.
    Fermilab Lattice, MILC collaboration, Bazavov A et al (2016) \(B^0_{(s)}\)-mixing matrix elements from lattice QCD for the Standard Model and beyond. Phys Rev D 93:113016.  https://doi.org/10.1103/PhysRevD.93.113016, arXiv:1602.03560
  5. 5.
    Blanke M, Buras AJ (2016) Universal Unitarity Triangle 2016 and the tension between \(\Delta M_{s,d}\) and \(\varepsilon _K\) in CMFV models. Eur Phys J C 76:197.  https://doi.org/10.1140/epjc/s10052-016-4044-6, arXiv:1602.04020
  6. 6.
    Buras AJ, De Fazio F (2016) 331 models facing the tensions in \(\Delta F=2\) processes with the impact on \(\varepsilon ^\prime /\varepsilon \), \(B_s\rightarrow \mu ^+\mu ^-\) and \(B\rightarrow K^*\mu ^+\mu ^-\). JHEP 08:115.  https://doi.org/10.1007/JHEP08(2016)115, arXiv: 1604.02344
  7. 7.
    Altmannshofer W, Gori S, Robinson DJ, Tuckler D (2018) The flavor-locked flavorful two higgs doublet model. JHEP 03:129.  https://doi.org/10.1007/JHEP03(2018)129, arXiv: 1712.01847
  8. 8.
    Bobrowski M, Lenz A, Riedl J, Rohrwild J (2009) How much space is left for a new family of fermions? Phys Rev D 79:113006.  https://doi.org/10.1103/PhysRevD.79.113006, arXiv:0902.4883
  9. 9.
    Blanke M, Buras AJ (2007) Lower bounds on \(\Delta M_{s, d}\) from constrained minimal flavour violation. JHEP 05:061.  https://doi.org/10.1088/1126-6708/2007/05/061, arXiv: hep-ph/0610037ADSCrossRefGoogle Scholar
  10. 10.
    LHCb collaboration, Aaij R et al (2015) Angular analysis and differential branching fraction of the decay \(B^0_s\rightarrow \phi \mu ^+\mu ^-\). JHEP 09:179.  https://doi.org/10.1007/JHEP09(2015)179, arXiv: 1506.08777
  11. 11.
    CMS collaboration, Khachatryan V et al (2016) Angular analysis of the decay \(B^0 \rightarrow K^{*0} \mu ^+ \mu ^-\) from pp collisions at \(\sqrt{s} = 8\) TeV. Phys Lett B 753:424–448.  https://doi.org/10.1016/j.physletb.2015.12.020, arXiv:1507.08126ADSCrossRefGoogle Scholar
  12. 12.
    BaBar collaboration, Lees JP et al (2016) Measurement of angular asymmetries in the decays \(B \rightarrow K^* \ell ^+ \ell ^-\). Phys Rev D 93:052015.  https://doi.org/10.1103/PhysRevD.93.052015, arXiv:1508.07960
  13. 13.
    Belle collaboration, Wei JT et al (2009) Measurement of the differential branching fraction and forward-backword asymmetry for \(B \rightarrow K^{(*)}\ell ^+\ell ^-\). Phys Rev Lett 103:171801.  https://doi.org/10.1103/PhysRevLett.103.171801, arXiv:0904.0770
  14. 14.
    CDF collaboration, Aaltonen T et al (2012) Measurements of the angular distributions in the decays \(B \rightarrow K^{(*)} \mu ^+ \mu ^-\) at CDF. Phys Rev Lett 108:081807.  https://doi.org/10.1103/PhysRevLett.108.081807, arXiv:1108.0695
  15. 15.
    LHCb collaboration, Aaij R et al (2016) Angular analysis of the \(B^{0} \rightarrow K^{*0} \mu ^{+} \mu ^{-}\) decay using 3 fb\(^{-1}\) of integrated luminosity. JHEP 02:104.  https://doi.org/10.1007/JHEP02(2016)104, arXiv:1512.04442
  16. 16.
    Belle collaboration, Abdesselam A et al (2016) Angular analysis of \(B^0 \rightarrow K^\ast (892)^0 \ell ^+ \ell ^-\). In: Proceedings, LHCSki 2016—a first discussion of 13 TeV results: Obergurgl, Austria, April 10–15, 2016. arXiv: 1604.04042, https://inspirehep.net/record/1446979/files/arXiv:1604.04042.pdf
  17. 17.
    Belle collaboration, Wehle S et al (2017) Lepton-flavor-dependent angular analysis of \(B\rightarrow K^\ast \ell ^+\ell ^-\). Phys Rev Lett 118:111801.  https://doi.org/10.1103/PhysRevLett.118.111801, arXiv:1612.05014
  18. 18.
    ATLAS collaboration, Aaboud M et al (2018) Angular analysis of \(B^0_d \rightarrow K^{*}\mu ^+\mu ^-\) decays in \(pp\) collisions at \(\sqrt{s}= 8\) TeV with the ATLAS detector. JHEP 10:047.  https://doi.org/10.1007/JHEP10(2018)047, arXiv: 1805.04000
  19. 19.
    CMS collaboration, Sirunyan AM et al (2018) Measurement of angular parameters from the decay \({\rm B}^0 \rightarrow {\rm K}^{*0} \mu ^+ \mu ^-\) in proton-proton collisions at \(\sqrt{s} = \) 8 TeV. Phys Lett B 781:517–541.  https://doi.org/10.1016/j.physletb.2018.04.030, arXiv:1710.02846ADSCrossRefGoogle Scholar
  20. 20.
    LHCb collaboration, Aaij R et al (2014) Differential branching fractions and isospin asymmetries of \(B \rightarrow K^{(*)} \mu ^+ \mu ^-\) decays. JHEP 06:133.  https://doi.org/10.1007/JHEP06(2014)133, arXiv:1403.8044
  21. 21.
    Capdevila B, Crivellin A, Descotes-Genon S, Matias J, Virto J (2018) Patterns of new physics in \(b\rightarrow s\ell ^+\ell ^-\) transitions in the light of recent data. JHEP 01:093.  https://doi.org/10.1007/JHEP01(2018)093, arXiv: 1704.05340
  22. 22.
    Altmannshofer W, Stangl P, Straub DM (2017) Interpreting hints for lepton flavor universality violation. Phys Rev D 96:055008.  https://doi.org/10.1103/PhysRevD.96.055008, arXiv:1704.05435
  23. 23.
    D’Amico G, Nardecchia M, Panci P, Sannino F, Strumia A, Torre R et al (2017) Flavour anomalies after the \(R_{K^*}\) measurement. JHEP 09:010.  https://doi.org/10.1007/JHEP09(2017)010, arXiv: 1704.05438
  24. 24.
    Alok AK, Bhattacharya B, Datta A, Kumar D, Kumar J, London D (2017) New physics in \(b \rightarrow s \mu ^+ \mu ^-\) after the measurement of \(R_{K^*}\). Phys Rev D 96:095009.  https://doi.org/10.1103/PhysRevD.96.095009, arXiv:1704.07397
  25. 25.
    Geng L-S, Grinstein B, Jäger S, Martin Camalich J, Ren X-L, Shi R-X (2017) Towards the discovery of new physics with lepton-universality ratios of \(b\rightarrow s\ell \ell \) decays. Phys Rev D 96:093006.  https://doi.org/10.1103/PhysRevD.96.093006, arXiv:1704.05446
  26. 26.
    Ciuchini M, Coutinho AM, Fedele M, Franco E, Paul A, Silvestrini L et al (2017) On flavourful easter eggs for new physics hunger and lepton flavour universality violation. Eur Phys J C 77:688.  https://doi.org/10.1140/epjc/s10052-017-5270-2, arXiv:1704.05447
  27. 27.
    Golowich E, Hewett J, Pakvasa S, Petrov AA, Yeghiyan GK (2011) Relating \(B_s\) mixing and \(B_s\rightarrow \mu ^+\mu ^-\) with new physics. Phys Rev D 83:114017.  https://doi.org/10.1103/PhysRevD.83.114017, arXiv:1102.0009
  28. 28.
    Ciuchini M, Franco E, Lubicz V, Martinelli G, Scimemi I, Silvestrini L (1998) Next-to-leading order QCD corrections to \(\Delta F = 2\) effective Hamiltonians. Nucl Phys B 523:501–525.  https://doi.org/10.1016/S0550-3213(98)00161-8, arXiv:hep-ph/9711402ADSCrossRefGoogle Scholar
  29. 29.
    Buras AJ, Misiak M, Urban J (2000) Two loop QCD anomalous dimensions of flavor changing four quark operators within and beyond the standard model. Nucl Phys B 586:397–426.  https://doi.org/10.1016/S0550-3213(00)00437-5, arXiv:hep-ph/0005183ADSCrossRefGoogle Scholar
  30. 30.
    Descotes-Genon S, Matias J, Virto J (2013) Understanding the \(B\rightarrow K^*\mu ^+\mu ^-\) anomaly. Phys Rev D 88:074002.  https://doi.org/10.1103/PhysRevD.88.074002, arXiv:1307.5683
  31. 31.
    Beaujean F, Bobeth C, van Dyk D (2017) Comprehensive Bayesian analysis of rare (semi)leptonic and radiative \(B\) decays. Eur Phys J C 74:2897.  https://doi.org/10.1140/epjc/s10052-014-2897-0,  https://doi.org/10.1140/epjc/s10052-014-3179-6, arXiv:1310.2478
  32. 32.
    Altmannshofer W, Straub DM (2015) New physics in \(b\rightarrow s\) transitions after LHC run 1. Eur Phys J C 75:382.  https://doi.org/10.1140/epjc/s10052-015-3602-7, arXiv:1411.3161
  33. 33.
    Descotes-Genon S, Hofer L, Matias J, Virto J (2016) Global analysis of \(b\rightarrow s\ell \ell \) anomalies. JHEP 06:092.  https://doi.org/10.1007/JHEP06(2016)092, arXiv: 1510.04239
  34. 34.
    Hurth T, Mahmoudi F, Neshatpour S (2016) On the anomalies in the latest LHCb data. Nucl Phys B 909:737–777.  https://doi.org/10.1016/j.nuclphysb.2016.05.022, arXiv:1603.00865ADSCrossRefGoogle Scholar
  35. 35.
    Altmannshofer W, Niehoff C, Stangl P, Straub DM (2017) Status of the \(B\rightarrow K^*\mu ^+\mu ^-\) anomaly after Moriond 2017. Eur Phys J C 77:377.  https://doi.org/10.1140/epjc/s10052-017-4952-0, arXiv:1703.09189
  36. 36.
    Alok AK, Bhattacharya B, Kumar D, Kumar J, London D, Sankar SU (2017) New physics in \(b \rightarrow s \mu ^+ \mu ^-\): Distinguishing models through CP-violating effects. Phys Rev D 96:015034.  https://doi.org/10.1103/PhysRevD.96.015034, arXiv:1703.09247
  37. 37.
    Buras AJ, Girrbach J (2013) Left-handed \(Z^{\prime }\) and \(Z\) FCNC quark couplings facing new \(b \rightarrow s \mu ^+ \mu ^-\) data. JHEP 12:009.  https://doi.org/10.1007/JHEP12(2013)009, arXiv:1309.2466
  38. 38.
    Gauld R, Goertz F, Haisch U (2014) An explicit Z’-boson explanation of the \(B \rightarrow K^* \mu ^+ \mu ^-\) anomaly. JHEP 01:069.  https://doi.org/10.1007/JHEP01(2014)069, arXiv:1310.1082
  39. 39.
    Buras AJ, De Fazio F, Girrbach J (2014) 331 models facing new \(b \rightarrow s\mu ^+ \mu ^-\) data. JHEP 02:112.  https://doi.org/10.1007/JHEP02(2014)112, arXiv:1311.6729
  40. 40.
    Altmannshofer W, Gori S, Pospelov M, Yavin I (2014) Quark flavor transitions in \(L_\mu -L_\tau \) models. Phys Rev D 89:095033.  https://doi.org/10.1103/PhysRevD.89.095033, arXiv:1403.1269
  41. 41.
    Crivellin A, D’Ambrosio G, Heeck J (2015) Explaining \(h\rightarrow \mu ^\pm \tau ^\mp \), \(B\rightarrow K^* \mu ^+\mu ^-\) and \(B\rightarrow K \mu ^+\mu ^-/B\rightarrow K e^+e^-\) in a two-Higgs-doublet model with gauged \(L_\mu -L_\tau \). Phys Rev Lett 114:151801.  https://doi.org/10.1103/PhysRevLett.114.151801, arXiv:1501.00993
  42. 42.
    Crivellin A, D’Ambrosio G, Heeck J (2015) Addressing the LHC flavor anomalies with horizontal gauge symmetries. Phys Rev D 91:075006.  https://doi.org/10.1103/PhysRevD.91.075006, arXiv:1503.03477
  43. 43.
    Celis A, Fuentes-Martin J, Jung M, Serôdio H (2015) Family nonuniversal \(Z^\prime \) models with protected flavor-changing interactions. Phys Rev D 92:015007.  https://doi.org/10.1103/PhysRevD.92.015007, arXiv:1505.03079
  44. 44.
    Belanger G, Delaunay C, Westhoff S (2015) A dark matter relic from muon anomalies. Phys Rev D 92:055021.  https://doi.org/10.1103/PhysRevD.92.055021, arXiv:1507.06660
  45. 45.
    Falkowski A, Nardecchia M, Ziegler R (2015) Lepton flavor non-universality in B-meson decays from a U(2) flavor model. JHEP 11:173.  https://doi.org/10.1007/JHEP11(2015)173, arXiv: 1509.01249
  46. 46.
    Carmona A, Goertz F (2016) Lepton flavor and nonuniversality from minimal composite higgs setups. Phys Rev Lett 116:251801.  https://doi.org/10.1103/PhysRevLett.116.251801, arXiv:1510.07658
  47. 47.
    Allanach B, Queiroz FS, Strumia A, Sun S (2016) \(Z?\) models for the LHCb and \(g-2\) muon anomalies:Phys Rev D 93:055045.  https://doi.org/10.1103/PhysRevD.93.055045,  https://doi.org/10.1103/PhysRevD.95.119902, arXiv:1511.07447
  48. 48.
    Chiang C-W, He X-G, Valencia G (2016) Z? model for b?s?\(\overline{?}\) flavor anomalies. Phys Rev D 93:074003.  https://doi.org/10.1103/PhysRevD.93.074003, arXiv:1601.07328
  49. 49.
    Boucenna SM, Celis A, Fuentes-Martin J, Vicente A, Virto J (2016) Non-abelian gauge extensions for B-decay anomalies. Phys Lett B 760:214–219.  https://doi.org/10.1016/j.physletb.2016.06.067, arXiv:1604.03088ADSCrossRefGoogle Scholar
  50. 50.
    Megias E, Panico G, Pujolas O, Quiros M (2016) A Natural origin for the LHCb anomalies. JHEP 09:118.  https://doi.org/10.1007/JHEP09(2016)118, arXiv:1608.02362
  51. 51.
    Boucenna SM, Celis A, Fuentes-Martin J, Vicente A, Virto J (2016) Phenomenology of an \(SU(2) \times SU(2) \times U(1)\) model with lepton-flavour non-universality. JHEP 12:059.  https://doi.org/10.1007/JHEP12(2016)059, arXiv: 1608.01349
  52. 52.
    Altmannshofer W, Gori S, Profumo S, Queiroz FS (2016) Explaining dark matter and B decay anomalies with an \(L_\mu - L_\tau \) model. JHEP 12:106.  https://doi.org/10.1007/JHEP12(2016)106, arXiv: 1609.04026
  53. 53.
    Crivellin A, Fuentes-Martin J, Greljo A, Isidori G (2017) Lepton flavor non-universality in B decays from Dynamical Yukawas. Phys Lett B 766:77–85.  https://doi.org/10.1016/j.physletb.2016.12.057, arXiv:1611.02703ADSCrossRefGoogle Scholar
  54. 54.
    Garcia Garcia I (2017) LHCb anomalies from a natural perspective. JHEP 03:040.  https://doi.org/10.1007/JHEP03(2017)040, arXiv: 1611.03507
  55. 55.
    Bhatia D, Chakraborty S, Dighe A (2017) Neutrino mixing and \(R_K\) anomaly in U(1)\(_X\) models: a bottom-up approach. JHEP 03:117.  https://doi.org/10.1007/JHEP03(2017)117, arXiv: 1701.05825
  56. 56.
    Cline JM, Cornell JM, London D, Watanabe R (2017) Hidden sector explanation of \(B\)-decay and cosmic ray anomalies. Phys Rev D 95:095015.  https://doi.org/10.1103/PhysRevD.95.095015, arXiv:1702.00395
  57. 57.
    Baek S (2018) Dark matter contribution to \(b\rightarrow s \mu ^+ \mu ^-\) anomaly in local \(U(1)_{L_\mu -L_\tau }\) model. Phys Lett B 781:376–382.  https://doi.org/10.1016/j.physletb.2018.04.012, arXiv:1707.04573ADSCrossRefGoogle Scholar
  58. 58.
    Cline JM, Martin Camalich J (2017) \(B\) decay anomalies from nonabelian local horizontal symmetry. Phys Rev D 96:055036.  https://doi.org/10.1103/PhysRevD.96.055036, arXiv:1706.08510
  59. 59.
    Di Chiara S, Fowlie A, Fraser S, Marzo C, Marzola L, Raidal M et al (2017) Minimal flavor-changing \(Z^{\prime }\) models and muon \(g-2\) after the \(R_{K^*}\) measurement. Nucl Phys B 923:245–257.  https://doi.org/10.1016/j.nuclphysb.2017.08.003, arXiv:1704.06200ADSCrossRefGoogle Scholar
  60. 60.
    Kamenik JF, Soreq Y, Zupan J (2018) Lepton flavor universality violation without new sources of quark flavor violation. Phys Rev D 97:035002.  https://doi.org/10.1103/PhysRevD.97.035002, arXiv:1704.06005
  61. 61.
    Ko P, Omura Y, Shigekami Y, Yu C (2017) LHCb anomaly and B physics in flavored \(Z^\prime \) models with flavored Higgs doublets. Phys Rev D 95:115040.  https://doi.org/10.1103/PhysRevD.95.115040, arXiv:1702.08666
  62. 62.
    Ko P, Nomura T, Okada H (2017) Explaining \(B\rightarrow K^{(*)}\ell ^+ \ell ^-\) anomaly by radiatively induced coupling in \(U(1)_{\mu -\tau }\) gauge symmetry. Phys Rev D 95:111701.  https://doi.org/10.1103/PhysRevD.95.111701, arXiv:1702.02699
  63. 63.
    Alonso R, Cox P, Han C, Yanagida TT (2017) Anomaly-free local horizontal symmetry and anomaly-full rare B-decays. Phys Rev D 96:071701.  https://doi.org/10.1103/PhysRevD.96.071701, arXiv:1704.08158
  64. 64.
    Ellis J, Fairbairn M, Tunney P (2018) Anomaly-free models for flavour anomalies. Eur Phys J C 78:238.  https://doi.org/10.1140/epjc/s10052-018-5725-0, arXiv:1705.03447
  65. 65.
    Alonso R, Cox P, Han C, Yanagida TT (2017) Flavoured \(B-L\) Local symmetry and anomalous rare \(B\) decays. Phys Lett B 774:643–648.  https://doi.org/10.1016/j.physletb.2017.10.027, arXiv:1705.03858ADSCrossRefGoogle Scholar
  66. 66.
    Carmona A, Goertz F (2018) Recent \(\varvec {B}\) physics anomalies: a first hint for compositeness? Eur Phys J C 78:979.  https://doi.org/10.1140/epjc/s10052-018-6437-1, arXiv:1712.02536
  67. 67.
    Altmannshofer W, Gori S, Pospelov M, Yavin I (2014) Neutrino trident production: a powerful probe of new physics with neutrino beams. Phys Rev Lett 113:091801.  https://doi.org/10.1103/PhysRevLett.113.091801, arXiv:1406.2332
  68. 68.
    Falkowski A, King SF, Perdomo E, Pierre M (2018) Flavourful \(Z^{\prime }\) portal for vector-like neutrino Dark Matter and \(R_{K^{(*)}}\). JHEP 08:061.  https://doi.org/10.1007/JHEP08(2018)061, arXiv: 1803.04430
  69. 69.
    Di Luzio L, Nardecchia M (2017) What is the scale of new physics behind the \(B\)-flavour anomalies?. Eur Phys J C 77:536.  https://doi.org/10.1140/epjc/s10052-017-5118-9, arXiv:1706.01868
  70. 70.
    Di Luzio L, Kamenik JF, Nardecchia M (2017) Implications of perturbative unitarity for scalar di-boson resonance searches at LHC. Eur Phys J C 77:30.  https://doi.org/10.1140/epjc/s10052-017-4594-2, arXiv:1604.05746
  71. 71.
    ATLAS collaboration, Aaboud M et al (2017) Search for new high-mass phenomena in the dilepton final state using 36 \(fb^{-1}\) of proton-proton collision data at \(\sqrt{s}=13\) TeV with the ATLAS detector. JHEP 10:182.  https://doi.org/10.1007/JHEP10(2017)182, arXiv:1707.02424
  72. 72.
    Allanach BC, Gripaios B, You T (2018) The case for future hadron colliders from \(B \rightarrow K^{(*)} \mu ^+ \mu ^-\) decays. JHEP 03:021.  https://doi.org/10.1007/JHEP03(2018)021, arXiv: 1710.06363
  73. 73.
    Hiller G, Schmaltz M (2014) \(R_K\) and future \(b \rightarrow s \ell \ell \) physics beyond the standard model opportunities. Phys Rev D 90:054014.  https://doi.org/10.1103/PhysRevD.90.054014, arXiv:1408.1627
  74. 74.
    Gripaios B, Nardecchia M, Renner SA (2015) Composite leptoquarks and anomalies in \(B\)-meson decays. JHEP 05:006.  https://doi.org/10.1007/JHEP05(2015)006, arXiv:1412.1791
  75. 75.
    de Medeiros Varzielas I, Hiller G (2015) Clues for flavor from rare lepton and quark decays. JHEP 06:072.  https://doi.org/10.1007/JHEP06(2015)072, arXiv: 1503.01084
  76. 76.
    Bečirević D, Fajfer S, Košnik N (2015) Lepton flavor nonuniversality in \(b \rightarrow s \mu ^+ \mu ^-\) processes. Phys Rev D 92:014016.  https://doi.org/10.1103/PhysRevD.92.014016, arXiv:1503.09024
  77. 77.
    Alonso R, Grinstein B, Martin Camalich J (2015) Lepton universality violation and lepton flavor conservation in \(B\)-meson decays. JHEP 10:184.  https://doi.org/10.1007/JHEP10(2015)184, arXiv: 1505.05164
  78. 78.
    Bauer M, Neubert M (2016) Minimal Leptoquark Explanation for the\(R_{D^{(*)}}\), \(R_K\) and \((g-2)_g\) anomalies. Phys Rev Lett 116:141802.  https://doi.org/10.1103/PhysRevLett.116.141802, arXiv:1511.01900
  79. 79.
    Fajfer S, Košnik N (2016) Vector leptoquark resolution of \(R_K\) and \(R_{D^{(*)}}\) puzzles. Phys Lett B 755:270–274.  https://doi.org/10.1016/j.physletb.2016.02.018, arXiv:1511.06024ADSCrossRefGoogle Scholar
  80. 80.
    Barbieri R, Isidori G, Pattori A, Senia F (2016) Anomalies in \(B\)-decays and \(U(2)\) flavour symmetry. Eur Phys J C 76:67.  https://doi.org/10.1140/epjc/s10052-016-3905-3, arXiv:1512.01560
  81. 81.
    Bečirević D, Košnik N, Sumensari O, Zukanovich Funchal R (2016) Palatable leptoquark scenarios for lepton flavor violation in exclusive \(b\rightarrow s\ell _1\ell _2\) modes. JHEP 11:035.  https://doi.org/10.1007/JHEP11(2016)035, arXiv: 1608.07583
  82. 82.
    Bečirević D, Fajfer S, Košnik N, Sumensari O (2016) Leptoquark model to explain the \(B\)-physics anomalies, \(R_K\) and \(R_D\). Phys Rev D 94:115021.  https://doi.org/10.1103/PhysRevD.94.115021, arXiv:1608.08501
  83. 83.
    Crivellin A, Müller D, Ota T (2017) Simultaneous explanation of R(D\(^{(*)}\)) and \(b \rightarrow s \mu ^{+} \mu ^{-}\): the last scalar leptoquarks standing. JHEP 09:040.  https://doi.org/10.1007/JHEP09(2017)040, arXiv: 1703.09226
  84. 84.
    Hiller G, Nisandzic I (2017) \(R_K\) and \(R_{K^{\ast }}\) beyond the standard model. Phys Rev D 96:035003.  https://doi.org/10.1103/PhysRevD.96.035003, arXiv:1704.05444
  85. 85.
    Bečirević D, Sumensari O (2017) A leptoquark model to accommodate \(R_K^{\rm exp} < R_K^{\rm SM}\) and \(R_{K^\ast }^{\rm exp} < R_{K^\ast }^{\rm SM}\). JHEP 08:104.  https://doi.org/10.1007/JHEP08(2017)104, arXiv: 1704.05835
  86. 86.
    Doršner I, Fajfer S, Faroughy DA, Košnik N, The role of the \(S_3\) GUT leptoquark in flavor universality and collider searches. arXiv:1706.07779
  87. 87.
    Assad N, Fornal B, Grinstein B (2018) Baryon number and lepton universality violation in leptoquark and diquark models. Phys Lett B 777:324–331.  https://doi.org/10.1016/j.physletb.2017.12.042, arXiv:1708.06350ADSCrossRefGoogle Scholar
  88. 88.
    Di Luzio L, Greljo A, Nardecchia M (2017) Gauge leptoquark as the origin of B-physics anomalies. Phys Rev D 96:115011.  https://doi.org/10.1103/PhysRevD.96.115011, arXiv:1708.08450
  89. 89.
    Calibbi L, Crivellin A, Li T (2018) Model of vector leptoquarks in view of the \(B\)-physics anomalies. Phys Rev D 98:115002.  https://doi.org/10.1103/PhysRevD.98.115002, arXiv:1709.00692
  90. 90.
    Bordone M, Cornella C, Fuentes-Martin J, Isidori G (2018) A three-site gauge model for flavor hierarchies and flavor anomalies. Phys Lett B 779:317–323.  https://doi.org/10.1016/j.physletb.2018.02.011, arXiv:1712.01368ADSCrossRefGoogle Scholar
  91. 91.
    Davidson S, Bailey DC, Campbell BA (1994) Model independent constraints on leptoquarks from rare processes. Z Phys C 61:613–644.  https://doi.org/10.1007/BF01552629, arXiv:hep-ph/9309310
  92. 92.
    Doršner I, Fajfer S, Greljo A, Kamenik JF, Košnik N (2016) Physics of leptoquarks in precision experiments and at particle colliders. Phys Rept 641:1–68.  https://doi.org/10.1016/j.physrep.2016.06.001, arXiv:1603.04993ADSMathSciNetCrossRefGoogle Scholar
  93. 93.
    Biggio C, Bordone M, Di Luzio L, Ridolfi G (2016) Massive vectors and loop observables: the \(g-2\) case. JHEP 10:002.  https://doi.org/10.1007/JHEP10(2016)002, arXiv: 1607.07621
  94. 94.
    Bobeth C, Buras AJ (2018) Leptoquarks meet \(\varepsilon ^\prime /\varepsilon \) and rare Kaon processes. JHEP 02:101.  https://doi.org/10.1007/JHEP02(2018)101, arXiv: 1712.01295
  95. 95.
    CMS collaboration, Sirunyan AM et al (2017) Search for third-generation scalar leptoquarks and heavy right-handed neutrinos in final states with two tau leptons and two jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV. JHEP 07:121.  https://doi.org/10.1007/JHEP07(2017)121, arXiv: 1703.03995
  96. 96.
    BaBar collaboration, Lees JP et al (2013) Measurement of an excess of \(\bar{B} \rightarrow D^{(*)}\tau ^- \bar{\nu }_\tau \) decays and implications for charged Higgs bosons. Phys Rev D 88:072012.  https://doi.org/10.1103/PhysRevD.88.072012. arXiv:1303.0571
  97. 97.
    LHCb collaboration, Aaij R et al (2015) Measurement of the ratio of branching fractions \(\cal B\it (\bar{B}^0 \rightarrow D^{*+}\tau ^{-}\bar{\nu }_{\tau })/\cal B\it (\bar{B}^0 \rightarrow D^{*+}\mu ^{-}\bar{\nu }_{\mu })\), Phys Rev Lett 115:111803.  https://doi.org/10.1103/PhysRevLett.115.159901,  https://doi.org/10.1103/PhysRevLett.115.111803, arXiv: 1506.08614
  98. 98.
    Belle collaboration, Hirose S et al (2017) Measurement of the \(\tau \) lepton polarization and \(R(D^*)\) in the decay \(\bar{B} \rightarrow D^* \tau ^- \bar{\nu }_\tau \). Phys Rev Lett 118:211801.  https://doi.org/10.1103/PhysRevLett.118.211801, arXiv:1612.00529
  99. 99.
    Feruglio F, Paradisi P, Pattori A (2017) Revisiting lepton flavor universality in B decays. Phys Rev Lett 118:011801.  https://doi.org/10.1103/PhysRevLett.118.011801, arXiv:1606.00524
  100. 100.
    Feruglio F, Paradisi P, Pattori A (2017) On the importance of electroweak corrections for B anomalies. JHEP 09:061.  https://doi.org/10.1007/JHEP09(2017)061, arXiv: 1705.00929
  101. 101.
    Buttazzo D, Greljo A, Isidori G, Marzocca D (2017) B-physics anomalies: a guide to combined explanations. JHEP 11:044.  https://doi.org/10.1007/JHEP11(2017)044, arXiv: 1706.07808
  102. 102.
    Greljo A, Isidori G, Marzocca D (2015) On the breaking of lepton flavor universality in B decays. JHEP 07:142.  https://doi.org/10.1007/JHEP07(2015)142, arXiv: 1506.01705
  103. 103.
    Lenz A, Nierste U (2007) Theoretical update of \(B_s - \bar{B}_s\) mixing. JHEP 06:072.  https://doi.org/10.1088/1126-6708/2007/06/072, arXiv:hep-ph/0612167CrossRefGoogle Scholar
  104. 104.
  105. 105.
    Buras AJ, Jäger S, Urban J (2001) Master formulae for \(\Delta F=2\) NLO QCD factors in the standard model and beyond. Nucl Phys B 605:600–624.  https://doi.org/10.1016/S0550-3213(01)00207-3, arXiv:hep-ph/0102316ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di FisicaLa Sapienza, University of RomeRomeItaly

Personalised recommendations