Advertisement

Charming Dark Matter

  • Matthew John KirkEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

As discussed in Sect. 1.3.1, dark matter has a long history, but the interactions of DM (outside of its gravitational influence) remain elusive, despite concerted efforts.

References

  1. 1.
    Bertone G, Hooper D (2018) History of dark matter. Rev Mod Phys 90: 045002.  https://doi.org/10.1103/RevModPhys.90.045002, arXiv:1605.04909
  2. 2.
    Particle Data Group collaboration, Dark Matter. http://pdg.lbl.gov/2017/reviews/rpp2017-rev-dark-matter.pdf
  3. 3.
    Springel V et al (2005) Simulating the joint evolution of quasars, galaxies and their large-scale distribution. Nature 435:629–636.  https://doi.org/10.1038/nature03597. arXiv:astro-ph/0504097ADSCrossRefGoogle Scholar
  4. 4.
    Abdallah J et al (2014) Simplified Models for Dark Matter and Missing Energy Searches at the LHC. arXiv:1409.2893
  5. 5.
    LHC New Physics Working Group collaboration, Alves D (2012) Simplified models for LHC new physics searches. J Phys G 39:105005.  https://doi.org/10.1088/0954-3899/39/10/105005. arXiv:1105.2838ADSCrossRefGoogle Scholar
  6. 6.
    Alwall J, Schuster P, Toro N (2009) Simplified models for a first characterization of new physics at the LHC. Phys Rev D 79:075020.  https://doi.org/10.1103/PhysRevD.79.075020. arXiv:0810.3921ADSCrossRefGoogle Scholar
  7. 7.
    ATLAS collaboration, Aaboud M et al. (2016) Search for new phenomena in events with a photon and missing transverse momentum in  \(pp\) collisions at  \(\sqrt{s}=13\) TeV with the ATLAS detector. JHEP 06:059.  https://doi.org/10.1007/JHEP06(2016)059, arXiv:1604.01306
  8. 8.
    De Simone A, Jacques T (2016) Simplified models vs. effective field theory approaches in dark matter searches. Eur Phys J C 76:367.  https://doi.org/10.1140/epjc/s10052-016-4208-4, arXiv:1603.08002
  9. 9.
    Goodman J, Shepherd W (2011) LHC bounds on UV-complete models of dark matter. arXiv:1111.2359
  10. 10.
    Dreiner H, Schmeier D, Tattersall J (2013) Contact interactions probe effective dark matter models at the LHC. EPL 102:51001.  https://doi.org/10.1209/0295-5075/102/51001. arXiv:1303.3348ADSCrossRefGoogle Scholar
  11. 11.
    Abercrombie D et al (2015) Dark matter benchmark models for early LHC Run-2 searches: report of the ATLAS/CMS dark matter forum. arXiv:1507.00966
  12. 12.
    Busoni G et al (2016) Recommendations on presenting LHC searches for missing transverse energy signals using simplified \(s\)-channel models of dark matter. arXiv:1603.04156
  13. 13.
    Goncalves D, Machado PAN, No JM (2017) Simplified models for dark matter face their consistent completions. Phys Rev D 95:055027.  https://doi.org/10.1103/PhysRevD.95.055027, arXiv:1611.04593
  14. 14.
    Kahlhoefer F, Schmidt-Hoberg K, Schwetz T, Vogl S (2016) Implications of unitarity and gauge invariance for simplified dark matter models. JHEP 02:016.  https://doi.org/10.1007/JHEP02(2016)016, arXiv:1510.02110
  15. 15.
    Englert C, McCullough M, Spannowsky M (2016) S-channel dark matter simplified models and unitarity. Phys Dark Univ 14:48–56.  https://doi.org/10.1016/j.dark.2016.09.002, arXiv:1604.07975ADSCrossRefGoogle Scholar
  16. 16.
    Buras AJ, Gambino P, Gorbahn M, Jäger S, Silvestrini L (2001) Universal unitarity triangle and physics beyond the standard model. Phys Lett B 500:161–167.  https://doi.org/10.1016/S0370-2693(01)00061-2. arXiv:hep-ph/0007085ADSCrossRefGoogle Scholar
  17. 17.
    D’Ambrosio G, Giudice GF, Isidori G, Strumia A (2002) Minimal flavor violation: an effective field theory approach. Nucl Phys B 645:155–187.  https://doi.org/10.1016/S0550-3213(02)00836-2. arXiv:hep-ph/0207036ADSCrossRefGoogle Scholar
  18. 18.
    Agrawal P, Blanke M, Gemmler K (2014) Flavored dark matter beyond minimal flavor violation. JHEP 10:72.  https://doi.org/10.1007/JHEP10(2014)072. arXiv:1405.6709ADSCrossRefGoogle Scholar
  19. 19.
    Chen M-C, Huang J, Takhistov V (2016) Beyond minimal lepton flavored dark matter. JHEP 02:060.  https://doi.org/10.1007/JHEP02(2016)060, arXiv:1510.04694
  20. 20.
    Blanke M, Kast S (2017) Top-flavoured dark matter in dark minimal flavour violation. JHEP 05:162.  https://doi.org/10.1007/JHEP05(2017)162, arXiv:1702.08457
  21. 21.
    Baek S, Ko P, Wu P (2018) Heavy quark-philic scalar dark matter with a vector-like fermion portal. JCAP 1807:008.  https://doi.org/10.1088/1475-7516/2018/07/008, arXiv:1709.00697CrossRefGoogle Scholar
  22. 22.
    Agrawal P, Blanchet S, Chacko Z, Kilic C (2012) Flavored dark matter, and its implications for direct detection and colliders. Phys Rev D 86:055002.  https://doi.org/10.1103/PhysRevD.86.055002. arXiv:1109.3516ADSCrossRefGoogle Scholar
  23. 23.
    Kilic C, Klimek MD, Yu J-H (2015) Signatures of top flavored dark matter. Phys Rev D 91:054036.  https://doi.org/10.1103/PhysRevD.91.054036, arXiv:1501.02202
  24. 24.
    Bhattacharya B, London D, Cline JM, Datta A, Dupuis G (2015) Quark-flavored scalar dark matter. Phys Rev D 92:115012.  https://doi.org/10.1103/PhysRevD.92.115012, arXiv:1509.04271
  25. 25.
    Peskin ME, Takeuchi T (1990) A new constraint on a strongly interacting Higgs sector. Phys Rev Lett 65:964–967.  https://doi.org/10.1103/PhysRevLett.65.964ADSCrossRefGoogle Scholar
  26. 26.
    Peskin ME, Takeuchi T (1992) Estimation of oblique electroweak corrections. Phys Rev D 46:381–409.  https://doi.org/10.1103/PhysRevD.46.381ADSCrossRefGoogle Scholar
  27. 27.
    Grimus W, Lavoura L, Ogreid OM, Osland P (2008) The oblique parameters in multi-Higgs-doublet models. Nucl Phys B 801:81–96.  https://doi.org/10.1016/j.nuclphysb.2008.04.019. arXiv:0802.4353ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Isidori G, Straub DM (2012) Minimal flavour violation and beyond. Eur Phys J C 72:2103.  https://doi.org/10.1140/epjc/s10052-012-2103-1. arXiv:1202.0464ADSCrossRefGoogle Scholar
  29. 29.
    Batell B, Pradler J, Spannowsky M (2011) Dark matter from minimal flavor violation. JHEP 08:038.  https://doi.org/10.1007/JHEP08(2011)038. arXiv:1105.1781ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Shape Planck collaboration, Ade PAR, Planck, et al (2015) results (2016) Cosmological parameters, XIII. Astron Astrophys 594:A13.  https://doi.org/10.1051/0004-6361/201525830, arXiv:1502.01589
  31. 31.
    Griest K, Seckel D (1991) Three exceptions in the calculation of relic abundances. Phys Rev D 43:3191–3203.  https://doi.org/10.1103/PhysRevD.43.3191ADSCrossRefGoogle Scholar
  32. 32.
    Busoni G, De Simone A, Jacques T, Morgante E, Riotto A (2015) Making the most of the relic density for dark matter searches at the LHC 14 TeV run. JCAP 1503:022.  https://doi.org/10.1088/1475-7516/2015/03/022. arXiv:1410.7409ADSCrossRefGoogle Scholar
  33. 33.
    Bertone G, Hooper D, Silk J (2005) Particle dark matter: evidence, candidates and constraints. Phys Rept 405:279–390.  https://doi.org/10.1016/j.physrep.2004.08.031. arXiv:hep-ph/0404175ADSCrossRefGoogle Scholar
  34. 34.
    Gondolo P, Gelmini G (1991) Cosmic abundances of stable particles: improved analysis. Nucl Phys B 360:145–179.  https://doi.org/10.1016/0550-3213(91)90438-4ADSCrossRefGoogle Scholar
  35. 35.
    HFLAV collaboration, Global Fit for \(D^{0}-{\bar{D}^{0}}\) Mixing, CKM16. http://www.slac.stanford.edu/xorg/hflav/charm/CKM16/results_mix_cpv.html
  36. 36.
    Golowich E, Hewett J, Pakvasa S, Petrov AA (2007) Implications of \(D^0\) - \(\bar{D}^0\) mixing for new physics. Phys Rev D 76:095009.  https://doi.org/10.1103/PhysRevD.76.095009. arXiv:0705.3650ADSCrossRefGoogle Scholar
  37. 37.
    Aoki S, et al. (2017) Review of lattice results concerning low-energy particle physics. Eur Phys J C 77:112.  https://doi.org/10.1140/epjc/s10052-016-4509-7, arXiv:1607.00299
  38. 38.
    Na H, Davies CTH, Follana E, Lepage GP, Shigemitsu J (2012) \(|V_{cd}|\) from D Meson Leptonic Decays. Phys Rev D 86:054510.  https://doi.org/10.1103/PhysRevD.86.054510. arXiv:1206.4936ADSCrossRefGoogle Scholar
  39. 39.
    Fermilab Lattice MILC, collaboration, Bazavov A, et al (2012) B- and D-meson decay constants from three-flavor lattice QCD. Phys Rev D 85:114506.  https://doi.org/10.1103/PhysRevD.85.114506. arXiv:1112.3051
  40. 40.
    Carrasco N et al (2014) \(D^0\) - \(\bar{D}^0\) mixing in the standard model and beyond from \(N_f\) =2 twisted mass QCD. Phys Rev D 90:014502.  https://doi.org/10.1103/PhysRevD.90.014502. arXiv:1403.7302ADSCrossRefGoogle Scholar
  41. 41.
    Fajfer S, Košnik N (2015) Prospects of discovering new physics in rare charm decays. Eur Phys J C 75:567 https://doi.org/10.1140/epjc/s10052-015-3801-2, arXiv:1510.00965
  42. 42.
    CMS collaboration, Khachatryan V, et al. (2016) Search for anomalous single top quark production in association with a photon in pp collisions at  \( \sqrt{s}=8 \)  TeV. JHEP 04:035.  https://doi.org/10.1007/JHEP04(2016)035, arXiv:1511.03951Google Scholar
  43. 43.
    LUX collaboration, Akerib DS, et al (2014) First results from the LUX dark matter experiment at the Sanford underground research facility. Phys Rev Lett 112:091303.  https://doi.org/10.1103/PhysRevLett.112.091303. arXiv:1310.8214
  44. 44.
    LUX collaboration, Akerib DS, et al. (2016) Improved limits on scattering of weakly interacting massive particles from reanalysis of 2013 LUX data. Phys Rev Lett 116:161301.  https://doi.org/10.1103/PhysRevLett.116.161301, arXiv:1512.03506
  45. 45.
    SuperCDMS collaboration, Agnese R, et al. (2016) New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment. Phys Rev Lett 116:071301.  https://doi.org/10.1103/PhysRevLett.116.071301, arXiv:1509.02448
  46. 46.
    Crivellin A, D’Eramo F, Procura M (2014) New constraints on dark matter effective theories from standard model loops. Phys Rev Lett 112:191304.  https://doi.org/10.1103/PhysRevLett.112.191304. arXiv:1402.1173ADSCrossRefGoogle Scholar
  47. 47.
    D’Eramo F, Procura M (2015) Connecting dark matter UV complete models to direct detection rates via effective field theory. JHEP 04:054.  https://doi.org/10.1007/JHEP04(2015)054. arXiv:1411.3342ADSCrossRefGoogle Scholar
  48. 48.
    Fitzpatrick AL, Haxton W, Katz E, Lubbers N, Xu Y (2013) The effective field theory of dark matter direct detection. JCAP 1302:004.  https://doi.org/10.1088/1475-7516/2013/02/004. arXiv:1203.3542ADSCrossRefGoogle Scholar
  49. 49.
    Ibarra A, Wild S (2015) Dirac dark matter with a charged mediator: a comprehensive one-loop analysis of the direct detection phenomenology. JCAP 1505:047.  https://doi.org/10.1088/1475-7516/2015/05/047, arXiv:1503.03382CrossRefGoogle Scholar
  50. 50.
    Kahlhoefer F, Wild S (2016) Studying generalised dark matter interactions with extended halo-independent methods. JCAP 1610:032.  https://doi.org/10.1088/1475-7516/2016/10/032, arXiv:1607.04418CrossRefGoogle Scholar
  51. 51.
    Drees M, Nojiri M (1993) Neutralino-nucleon scattering revisited. Phys Rev D 48:3483–3501.  https://doi.org/10.1103/PhysRevD.48.3483. arXiv:hep-ph/9307208ADSCrossRefGoogle Scholar
  52. 52.
    Hisano J, Nagai R, Nagata N (2015) Effective Theories for Dark Matter Nucleon Scattering. JHEP 05: 037. https://doi.org/10.1007/JHEP05(2015)037, arXiv:1502.02244
  53. 53.
    Gondolo P, Scopel S (2013) On the sbottom resonance in dark matter scattering. JCAP 1310:032.  https://doi.org/10.1088/1475-7516/2013/10/032. arXiv:1307.4481ADSCrossRefGoogle Scholar
  54. 54.
    XENON collaboration, Aprile E, et al. (2017) First dark matter search results from the XENON1T experiment. Phys Rev Lett 119:181301.  https://doi.org/10.1103/PhysRevLett.119.181301, arXiv:1705.06655
  55. 55.
    PandaX-II collaboration, Cui X, et al. (2017) Dark matter results from 54-Ton-Day exposure of PandaX-II experiment. Phys Rev Lett 119:181302.  https://doi.org/10.1103/PhysRevLett.119.181302, arXiv:1708.06917
  56. 56.
    Cirelli M, Corcella G, Hektor A, Hutsi G, Kadastik M, Panci P et al (2011) PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection. JCAP 1103:051.  https://doi.org/10.1088/1475-7516/2012/10/E01,  https://doi.org/10.1088/1475-7516/2011/03/051. arXiv:1012.4515
  57. 57.
    MAGIC, Fermi-LAT collaboration, Rico J, Wood M, Drlica-Wagner A, Aleksić J (2016) Limits to dark matter properties from a combined analysis of MAGIC and  \(Fermi\)-LAT observations of dwarf satellite galaxies. PoS ICRC 2015 1206.  https://doi.org/10.22323/1.236.1206, arXiv:1508.05827
  58. 58.
    Boudaud M (2015) A fussy revisitation of antiprotons as a tool for Dark Matter searches. arXiv:1510.07500
  59. 59.
    Di Mauro M, Vittino A (2016) AMS-02 electrons and positrons: astrophysical interpretation and Dark Matter constraints. PoS ICRC 2015 1177.  https://doi.org/10.22323/1.236.1177, arXiv:1507.08680
  60. 60.
    IceCube collaboration, Aartsen MG, et al. (2016) All-flavour search for neutrinos from Dark Matter annihilations in the milky way with icecube/deepcore. Eur Phys J C 76:531.  https://doi.org/10.1140/epjc/s10052-016-4375-3, arXiv:1606.00209
  61. 61.
    H.E.S.S. collaboration, Lefranc V, Moulin E (2016) Dark matter search in the inner Galactic halo with H.E.S.S. I and H.E.S.S. II. PoS ICRC 2015 1208.  https://doi.org/10.22323/1.236.1208, arXiv:1509.04123
  62. 62.
    Fermi-LAT collaboration, Ackermann M, et al. (2015) Search for extended gamma-ray emission from the Virgo galaxy cluster with Fermi-LAT. Astrophys J 812:159.  https://doi.org/10.1088/0004-637X/812/2/159, arXiv:1510.00004ADSCrossRefGoogle Scholar
  63. 63.
    Hahn T, Perez-Victoria M (1999) Automatized one loop calculations in four-dimensions and D-dimensions. Comput Phys Commun 118:153–165.  https://doi.org/10.1016/S0010-4655(98)00173-8. arXiv:hep-ph/9807565ADSCrossRefGoogle Scholar
  64. 64.
    Busoni G, De Simone A, Jacques T, Morgante E, Riotto A (2014) On the validity of the effective field theory for dark matter searches at the LHC part III: analysis for the \(t\)-channel. JCAP 1409:022.  https://doi.org/10.1088/1475-7516/2014/09/022. arXiv:1405.3101ADSCrossRefGoogle Scholar
  65. 65.
    ATLAS collaboration, Aad G, et al. (2015) Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at  \(\sqrt{s}=\) 8 TeV with the ATLAS detector. Eur Phys J C 75:299.  https://doi.org/10.1140/epjc/s10052-015-3517-3,  https://doi.org/10.1140/epjc/s10052-015-3639-7, arXiv:1502.01518
  66. 66.
    Alwall J, Frederix R, Frixione S, Hirschi V, Maltoni F, Mattelaer O et al (2014) The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07:079.  https://doi.org/10.1007/JHEP07(2014)079. arXiv:1405.0301ADSCrossRefzbMATHGoogle Scholar
  67. 67.
    ATLAS collaboration, Aaboud M, et al. (2016) Search for new phenomena in final states with an energetic jet and large missing transverse momentum in  \(pp\)  collisions at  \(\sqrt{s}=13\)  TeV using the ATLAS detector. Phys Rev D 94:032005.  https://doi.org/10.1103/PhysRevD.94.032005, arXiv:1604.07773
  68. 68.
    CMS collaboration, Khachatryan V, et al (2015) Search for dark matter, extra dimensions, and unparticles in monojet events in proton-proton collisions at \(\sqrt{s} = 8\) TeV. Eur Phys J C 75:235.  https://doi.org/10.1140/epjc/s10052-015-3451-4. arXiv:1408.3583
  69. 69.
    ATLAS collaboration, Aad G, et al (2014) Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \(\sqrt{s}=8\) TeV proton-proton collision data. JHEP 09:176.  https://doi.org/10.1007/JHEP09(2014)176. arXiv:1405.7875
  70. 70.
    ATLAS collaboration, Aaboud M, et al. (2016) Search for squarks and gluinos in final states with jets and missing transverse momentum at  \(\sqrt{s} =\)  13 TeV with the ATLAS detector. Eur Phys J C 76:392.  https://doi.org/10.1140/epjc/s10052-016-4184-8, arXiv:1605.03814
  71. 71.
    ATLAS collaboration, Aad G, et al (2014) Search for top squark pair production in final states with one isolated lepton, jets, and missing transverse momentum in \(\sqrt{s} =\) 8 TeV \(pp\) collisions with the ATLAS detector. JHEP 11:118.  https://doi.org/10.1007/JHEP11(2014)118. arXiv:1407.0583
  72. 72.
    ATLAS collaboration, Aad G, et al. (2015) Search for scalar charm quark pair production in  \(pp\)  collisions at  \(\sqrt{s}=\)  8 TeV with the ATLAS detector. Phys Rev Lett 114:161801.  https://doi.org/10.1103/PhysRevLett.114.161801, arXiv:1501.01325
  73. 73.
    Feroz F, Hobson MP (2008) Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis. Mon Not R Astron Soc 384:449.  https://doi.org/10.1111/j.1365-2966.2007.12353.x. arXiv:0704.3704ADSCrossRefGoogle Scholar
  74. 74.
    Feroz F, Hobson MP, Bridges M (2009) MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon Not R Astron Soc 398:1601–1614.  https://doi.org/10.1111/j.1365-2966.2009.14548.x. arXiv:0809.3437ADSCrossRefGoogle Scholar
  75. 75.
    Feroz F, Hobson MP, Cameron E, Pettitt AN, Importance nested sampling and the multinest algorithm. arXiv:1306.2144
  76. 76.
    Buchner J, Georgakakis A, Nandra K, Hsu L, Rangel C, Brightman M et al (2014) X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron Astrophys 564:A125.  https://doi.org/10.1051/0004-6361/201322971. arXiv:1402.0004ADSCrossRefGoogle Scholar
  77. 77.
    Fowlie A, Bardsley MH (2016) Superplot: a graphical interface for plotting and analysing MultiNest output. Eur Phys J Plus 131:391.  https://doi.org/10.1140/epjp/i2016-16391-0, arXiv:1603.00555

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di FisicaLa Sapienza, University of RomeRomeItaly

Personalised recommendations