Advertisement

Introduction

  • Matthew John KirkEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Particle physics can be described as the area of physics which concerns itself with describing the fundamental building blocks of the universe. Its aim is no less lofty than the construction of a model that can, with minimal input, generate correct predictions for the interactions on the smallest scales, and allow us to build up physical laws we can use to describe our world. Our current best working model of this type is known as the Standard Model (SM)—the nature of the SM will be described in the rest of this chapter, alongside a brief historical overview of its construction. Finding ways to clearly test the SM and probe possible extensions to it is the work which the remainder of this thesis consists of.

References

  1. 1.
    Dirac PAM (1928) The quantum theory of the electron. Proc R Soc Lond A 117:610–624.  https://doi.org/10.1098/rspa.1928.0023ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Tomonaga S (1946) On a relativistically invariant formulation of the quantum theory of wave fields. Prog Theor Phys 1:27–42.  https://doi.org/10.1143/PTP.1.27ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Schwinger JS (1948) On quantum electrodynamics and the magnetic moment of the electron. Phys Rev 73:416–417.  https://doi.org/10.1103/PhysRev.73.416ADSCrossRefGoogle Scholar
  4. 4.
    Schwinger JS (1948) Quantum electrodynamics. I A covariant formulation. Phys Rev 74:1439  https://doi.org/10.1103/PhysRev.74.1439ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Feynman RP (1949) Space - time approach to quantum electrodynamics. Phys Rev 76:769–789.  https://doi.org/10.1103/PhysRev.76.769ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Feynman RP (1949) The theory of positrons. Phys Rev 76:749–759.  https://doi.org/10.1103/PhysRev.76.749ADSCrossRefGoogle Scholar
  7. 7.
    Feynman RP (1950) Mathematical formulation of the quantum theory of electromagnetic interaction. Phys Rev 80:440–457.  https://doi.org/10.1103/PhysRev.80.440ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Englert F, Brout R (1964) Broken symmetry and the mass of gauge vector mesons. Phys Rev Lett 13:321–323.  https://doi.org/10.1103/PhysRevLett.13.321ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Higgs PW (1964) Broken symmetries and the masses of gauge bosons. Phys Rev Lett 13:508–509.  https://doi.org/10.1103/PhysRevLett.13.508ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Guralnik GS, Hagen CR, Kibble TWB (1964) Global conservation laws and massless particles. Phys Rev Lett 13:585–587.  https://doi.org/10.1103/PhysRevLett.13.585ADSCrossRefGoogle Scholar
  11. 11.
    Glashow SL (1961) Partial symmetries of weak interactions. Nucl Phys 22:579–588.  https://doi.org/10.1016/0029-5582(61)90469-2CrossRefGoogle Scholar
  12. 12.
    Weinberg S (1967) A model of leptons. Phys Rev Lett 19:1264–1266.  https://doi.org/10.1103/PhysRevLett.19.1264ADSCrossRefGoogle Scholar
  13. 13.
    Salam A (1968) Weak and electromagnetic interactions. Conf Proc C 680519:367–377Google Scholar
  14. 14.
    Fritzsch H, Gell-Mann M, Leutwyler H (1973) Advantages of the color octet gluon picture. Phys Lett 47B:365–368.  https://doi.org/10.1016/0370-2693(73)90625-4ADSCrossRefGoogle Scholar
  15. 15.
    Gross DJ, Wilczek F (1973) Ultraviolet behavior of nonabelian gauge theories. Phys Rev Lett 30:1343–1346.  https://doi.org/10.1103/PhysRevLett.30.1343ADSCrossRefGoogle Scholar
  16. 16.
    Politzer HD (1973) Reliable perturbative results for strong interactions? Phys Rev Lett 30:1346–1349.  https://doi.org/10.1103/PhysRevLett.30.1346ADSCrossRefGoogle Scholar
  17. 17.
    Fritzsch H (2001) The physics of flavor is the flavor of physics. In: Flavor physics. Proceedings, international conference, ICFP 2001, Zhang-Jia-Jie, China, May 31–June 6, 2001, pp 453–462.  https://doi.org/10.1142/9789812777379_0050, arXiv:hep-ph/0111051
  18. 18.
    Fritzsch H (2004) The physics of flavor: challenge for the future. J Korean Phys Soc 45:S297–S300. arXiv:0407069
  19. 19.
    Yukawa H (1935) On the interaction of elementary particles I. Proc Phys Math Soc Jap 17:48–57.  https://doi.org/10.1143/PTPS.1.1CrossRefzbMATHGoogle Scholar
  20. 20.
    Buras AJ, Gambino P, Gorbahn M, Jäger S, Silvestrini L (2001) Universal unitarity triangle and physics beyond the standard model. Phys Lett B 500:161–167.  https://doi.org/10.1016/S0370-2693(01)00061-2, arXiv:hep-ph/0007085ADSCrossRefGoogle Scholar
  21. 21.
    D’Ambrosio G, Giudice GF, Isidori G, Strumia A (2002) Minimal flavor violation: an effective field theory approach. Nucl Phys B 645:155–187.  https://doi.org/10.1016/S0550-3213(02)00836-2, arXiv:hep-ph/0207036ADSCrossRefGoogle Scholar
  22. 22.
    Cabibbo N (1963) Unitary symmetry and leptonic decays. Phys Rev Lett 10:531–533.  https://doi.org/10.1103/PhysRevLett.10.531ADSCrossRefGoogle Scholar
  23. 23.
    Kobayashi M, Maskawa T (1973) CP violation in the renormalizable theory of weak interaction. Prog Theor Phys 49:652–657.  https://doi.org/10.1143/PTP.49.652ADSCrossRefGoogle Scholar
  24. 24.
  25. 25.
    CKMfitter collaboration, Charles J, Hocker A, Lacker H, Laplace S, Le Diberder FR, Malcles J et al (2005) CP violation and the CKM matrix: assessing the impact of the asymmetric \(B\) factories. Eur Phys J C41:1–131.  https://doi.org/10.1140/epjc/s2005-02169-1, arXiv:hep-ph/0406184ADSCrossRefGoogle Scholar
  26. 26.
    CKMfitter collaboration. http://ckmfitter.in2p3.fr/
  27. 27.
    UTfit collaboration, Bona M et al (2006) The unitarity triangle fit in the standard model and hadronic parameters from lattice QCD: a reappraisal after the measurements of \(\Delta m_s\) and BR\((B \rightarrow \tau \nu _\tau )\), JHEP 10:081.  https://doi.org/10.1088/1126-6708/2006/10/081, arXiv:hep-ph/0606167ADSCrossRefGoogle Scholar
  28. 28.
  29. 29.
    Chau L-L, Keung W-Y (1984) Comments on the parametrization of the Kobayashi-Maskawa matrix. Phys Rev Lett 53:1802.  https://doi.org/10.1103/PhysRevLett.53.1802ADSCrossRefGoogle Scholar
  30. 30.
    Wolfenstein L (1983) Parametrization of the Kobayashi-Maskawa matrix. Phys Rev Lett 51:1945.  https://doi.org/10.1103/PhysRevLett.51.1945ADSCrossRefGoogle Scholar
  31. 31.
    Glashow SL, Iliopoulos J, Maiani L (1970) Weak interactions with Lepton-Hadron symmetry. Phys Rev D 2:1285–1292.  https://doi.org/10.1103/PhysRevD.2.1285ADSCrossRefGoogle Scholar
  32. 32.
    Luders G (1954) On the equivalence of invariance under time reversal and under particle-antiparticle conjugation for relativistic field theories. Kong Dan Vid Sel Mat Fys Med 28N5:1–17Google Scholar
  33. 33.
    Pauli W (1955) Niels Bohr and the development of physics: essays dedicated to Niels Bohr on the occasion of his seventieth birthday, W. Pauli edn. McGraw-HillGoogle Scholar
  34. 34.
    Bell JS (1954) Ph.D. thesis, University of BirminghamGoogle Scholar
  35. 35.
    Lee TD, Yang C-N (1956) Question of parity conservation in weak interactions. Phys Rev 104:254–258.  https://doi.org/10.1103/PhysRev.104.254ADSCrossRefGoogle Scholar
  36. 36.
    Wu CS, Ambler E, Hayward RW, Hoppes DD, Hudson RP (1957) Experimental test of parity conservation in beta decay. Phys Rev 105:1413–1414.  https://doi.org/10.1103/PhysRev.105.1413ADSCrossRefGoogle Scholar
  37. 37.
    Christenson JH, Cronin JW, Fitch VL, Turlay R (1964) Evidence for the \(2\pi \) decay of the \(K_2^0\) meson. Phys Rev Lett 13:138–140.  https://doi.org/10.1103/PhysRevLett.13.138ADSCrossRefGoogle Scholar
  38. 38.
    Jarlskog C (1985) Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP violation. Phys Rev Lett 55:1039.  https://doi.org/10.1103/PhysRevLett.55.1039ADSCrossRefGoogle Scholar
  39. 39.
    Jarlskog C (1985) A basis independent formulation of the connection between quark mass matrices, CP violation and experiment. Z Phys C 29:491–497.  https://doi.org/10.1007/BF01565198ADSCrossRefGoogle Scholar
  40. 40.
    ATLAS collaboration, Summary plots from the ATLAS standard model physics group. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/
  41. 41.
    CMS collaboration, Summaries of CMS cross section measurements. https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined
  42. 42.
    Zwicky F (1933) Die Rotverschiebung von extragalaktischen Nebeln. Helv Phys Acta 6:110–127.  https://doi.org/10.1007/s10714-008-0707-4ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    Zwicky F (1937) On the masses of nebulae and of clusters of nebulae. Astrophys J 86:217–246.  https://doi.org/10.1086/143864ADSCrossRefzbMATHGoogle Scholar
  44. 44.
    Rubin VC, Ford WK Jr (1970) Rotation of the andromeda nebula from a spectroscopic survey of emission regions. Astrophys J 159:379–403.  https://doi.org/10.1086/150317ADSCrossRefGoogle Scholar
  45. 45.
    Begeman KG, Broeils AH, Sanders RH (1991) Extended rotation curves of spiral galaxies: dark haloes and modified dynamics. Mon Not R Astron Soc 249:523.  https://doi.org/10.1093/mnras/249.3.523ADSCrossRefGoogle Scholar
  46. 46.
    Davis DS, White RE III (1996) Rosat temperatures and abundances for a complete sample of elliptical galaxies. Astrophys J 470:L35.  https://doi.org/10.1086/310289, arXiv:astro-ph/9607052ADSCrossRefGoogle Scholar
  47. 47.
    Allen SW, Rapetti DA, Schmidt RW, Ebeling H, Morris G, Fabian AC (2008) Improved constraints on dark energy from chandra X-ray observations of the largest relaxed galaxy clusters. Mon Not R Astron Soc 383:879–896.  https://doi.org/10.1111/j.1365-2966.2007.12610.x, arXiv:0706.0033ADSCrossRefGoogle Scholar
  48. 48.
    Planck collaboration, Ade PAR et al (2016) Planck 2015 results. XIII. Cosmological parameters. Astron Astrophys 594:A13.  https://doi.org/10.1051/0004-6361/201525830, arXiv:1502.01589
  49. 49.
    Massey R, Kitching T, Richard J (2010) The dark matter of gravitational lensing. Rept Prog Phys 73:086901.  https://doi.org/10.1088/0034-4885/73/8/086901, arXiv:1001.1739ADSCrossRefGoogle Scholar
  50. 50.
    Bertone G, Hooper D (2018) History of dark matter. Rev Mod Phys 90:045002.  https://doi.org/10.1103/RevModPhys.90.045002, arXiv:1605.04909
  51. 51.
    Particle Data Group collaboration, Big-Bang Nucleosynthesis. http://pdg.lbl.gov/2017/reviews/rpp2017-rev-bbang-nucleosynthesis.pdf
  52. 52.
    Cyburt RH, Fields BD, Olive KA, Yeh T-H (2016) Big bang nucleosynthesis: 2015. Rev Mod Phys 88:015004.  https://doi.org/10.1103/RevModPhys.88.015004, arXiv:1505.01076
  53. 53.
    Particle Data Group collaboration, Inflation. http://pdg.lbl.gov/2018/reviews/rpp2018-rev-inflation.pdf
  54. 54.
    Sakharov AD (1967) Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh Eksp Teor Fiz 5:32–35.  https://doi.org/10.1070/PU1991v034n05ABEH002497CrossRefGoogle Scholar
  55. 55.
    Klinkhamer FR, Manton NS (1984) A saddle point solution in the Weinberg-Salam theory. Phys Rev D 30:2212.  https://doi.org/10.1103/PhysRevD.30.2212ADSCrossRefGoogle Scholar
  56. 56.
    Kajantie K, Laine M, Rummukainen K, Shaposhnikov ME (1996) Is there a hot electroweak phase transition at m(H) larger or equal to m(W)? Phys Rev Lett 77:2887–2890.  https://doi.org/10.1103/PhysRevLett.77.2887, arXiv:hep-ph/9605288ADSCrossRefGoogle Scholar
  57. 57.
    Davis R Jr, Harmer DS, Hoffman KC (1968) Search for neutrinos from the sun. Phys Rev Lett 20:1205–1209.  https://doi.org/10.1103/PhysRevLett.20.1205ADSCrossRefGoogle Scholar
  58. 58.
    Super-Kamiokande collaboration, Fukuda Y et al (1998) Evidence for oscillation of atmospheric neutrinos. Phys Rev Lett 81:1562–1567.  https://doi.org/10.1103/PhysRevLett.81.1562, arXiv:hep-ex/9807003ADSCrossRefGoogle Scholar
  59. 59.
    Double Chooz collaboration, Abe Y et al (2012) Indication of reactor \(\bar{\nu }_e\) disappearance in the double Chooz experiment. Phys Rev Lett 108:131801.  https://doi.org/10.1103/PhysRevLett.108.131801, arXiv:1112.6353
  60. 60.
    OPERA collaboration, Agafonova N et al (2010) Observation of a first \(\nu _\tau \) candidate in the OPERA experiment in the CNGS beam. Phys Lett B691:138–145.  https://doi.org/10.1016/j.physletb.2010.06.022, arXiv:1006.1623ADSCrossRefGoogle Scholar
  61. 61.
    LHCb collaboration, Aaij R et al (2013) Measurement of form-factor-independent observables in the decay \(B^{0} \rightarrow K^{*0} \mu ^+ \mu ^-\). Phys Rev Lett 111:191801.  https://doi.org/10.1103/PhysRevLett.111.191801, arXiv:1308.1707
  62. 62.
    Descotes-Genon S, Matias J, Ramon M, Virto J (2013) Implications from clean observables for the binned analysis of \(B \rightarrow K*\mu ^+\mu ^-\) at large recoil. JHEP 01:048.  https://doi.org/10.1007/JHEP01(2013)048, arXiv:1207.2753
  63. 63.
    Matias J, Mescia F, Ramon M, Virto J (2012) Complete anatomy of \(\bar{B}_d \rightarrow \bar{K}^{* 0} (\rightarrow K \pi )l^+l^-\) and its angular distribution. JHEP 04:104.  https://doi.org/10.1007/JHEP04(2012)104, arXiv:1202.4266
  64. 64.
    LHCb collaboration, Aaij R et al (2015) Angular analysis and differential branching fraction of the decay \(B^0_s\rightarrow \phi \mu ^+\mu ^-\). JHEP 09:179.  https://doi.org/10.1007/JHEP09(2015)179, arXiv:1506.08777
  65. 65.
    LHCb collaboration, Aaij R et al (2016) Angular analysis of the \(B^{0} \rightarrow K^{*0} \mu ^{+} \mu ^{-}\) decay using 3 fb\(^{-1}\) of integrated luminosity. JHEP 02:104.  https://doi.org/10.1007/JHEP02(2016)104, arXiv:1512.04442
  66. 66.
    CMS collaboration, Khachatryan V et al (2016) Angular analysis of the decay \(B^0 \rightarrow K^{*0} \mu ^+ \mu ^-\) from pp collisions at \(\sqrt{s} = 8\) TeV. Phys Lett B 753:424–448.  https://doi.org/10.1016/j.physletb.2015.12.020, arXiv:1507.08126ADSCrossRefGoogle Scholar
  67. 67.
    CMS collaboration, Sirunyan AM et al (2018) Measurement of angular parameters from the decay \(\rm B^0 \rightarrow \rm K\rm ^{*0} \mu ^+ \mu ^-\) in proton-proton collisions at \(\sqrt{s} = \) 8 TeV. Phys Lett B781:517–541.  https://doi.org/10.1016/j.physletb.2018.04.030, arXiv:1710.02846ADSCrossRefGoogle Scholar
  68. 68.
    ATLAS collaboration, Aaboud M et al (2018) Angular analysis of \(B^0_d \rightarrow K^{*}\mu ^+\mu ^-\) decays in \(pp\) collisions at \(\sqrt{s}= 8\) TeV with the ATLAS detector. JHEP 10:047.  https://doi.org/10.1007/JHEP10(2018)047, arXiv:1805.04000
  69. 69.
    BaBar collaboration, Lees JP et al (2016) Measurement of angular asymmetries in the decays \(B \rightarrow K^* \ell ^+ \ell ^-\). Phys Rev D 93:052015.  https://doi.org/10.1103/PhysRevD.93.052015, arXiv:1508.07960
  70. 70.
    Belle collaboration, Abdesselam A et al (2016) Angular analysis of \(B^0 \rightarrow K^\ast (892)^0 \ell ^+ \ell ^-\), in Proceedings, LHCSki 2016 - A first discussion of 13 TeV results: Obergurgl, Austria, April 10–15, 2016, arxiv:1604.04042, https://inspirehep.net/record/1446979/files/arXiv:1604.04042.pdf
  71. 71.
    Belle collaboration, Wehle S et al (2017) Lepton-flavor-dependent angular analysis of \(B\rightarrow K^\ast \ell ^+\ell ^-\). Phys Rev Lett 118:111801.  https://doi.org/10.1103/PhysRevLett.118.111801, arXiv:1612.05014
  72. 72.
    Jäger S, Camalich JM (2013) On \(B \rightarrow V \ell \ell \) at small dilepton invariant mass, power corrections, and new physics. JHEP 05:043.  https://doi.org/10.1007/JHEP05(2013)043, arXiv:1212.2263
  73. 73.
    Jäger S, Camalich JM (2016) Reassessing the discovery potential of the \(B \rightarrow K^{*} \ell ^+\ell ^-\) decays in the large-recoil region: SM challenges and BSM opportunities. Phys Rev D 93:014028.  https://doi.org/10.1103/PhysRevD.93.014028, arXiv:1412.3183
  74. 74.
    Descotes-Genon S, Hofer L, Matias J, Virto J (2014) On the impact of power corrections in the prediction of \(B \rightarrow K^*\mu ^+\mu ^-\) observables. JHEP 12:125.  https://doi.org/10.1007/JHEP12(2014)125, arXiv:1407.8526
  75. 75.
    Ciuchini M, Fedele M, Franco E, Mishima S, Paul A, Silvestrini L et al (2016) \(B\rightarrow K^* \ell ^+ \ell ^-\) decays at large recoil in the standard model: a theoretical reappraisal. JHEP 06:116.  https://doi.org/10.1007/JHEP06(2016)116, arXiv:1512.07157
  76. 76.
    Chobanova VG, Hurth T, Mahmoudi F, Santos DM, Neshatpour S (2017) Large hadronic power corrections or new physics in the rare decay \(B \rightarrow K^{*}\mu ^{+}\mu ^{-}\)? JHEP 07:025.  https://doi.org/10.1007/JHEP07(2017)025, arXiv:1702.02234
  77. 77.
    Capdevila B, Descotes-Genon S, Hofer L, Matias J (2017) Hadronic uncertainties in \(B \rightarrow K^* \mu ^+ \mu ^-\): a state-of-the-art analysis. JHEP 04:016.  https://doi.org/10.1007/JHEP04(2017)016, arXiv:1701.08672
  78. 78.
    Bobeth C, Chrzaszcz M, van Dyk D, Virto J (2018) Long-distance effects in \(B\rightarrow K^*\ell \ell \) from analyticity. Eur Phys J C 78:6.  https://doi.org/10.1140/epjc/s10052-018-5918-6, arXiv:1707.07305
  79. 79.
    LHCb collaboration, Aaij R et al (2014) Test of lepton universality using \(B^{+}\rightarrow K^{+}\ell ^{+}\ell ^{-}\) decays. Phys Rev Lett 113:151601.  https://doi.org/10.1103/PhysRevLett.113.151601, arXiv:1406.6482
  80. 80.
    LHCb collaboration, Aaij R et al (2017) Test of lepton universality with \(B^{0} \rightarrow K^{*0}\ell ^{+}\ell ^{-}\) decays. JHEP 08:055.  https://doi.org/10.1007/JHEP08(2017)055, arXiv:1705.05802
  81. 81.
    Belle collaboration, Wei JT et al (2009) Measurement of the differential branching fraction and forward-backword asymmetry for \(B \rightarrow K^{(*)}\ell ^+\ell ^-\). Phys Rev Lett 103:171801  https://doi.org/10.1103/PhysRevLett.103.171801, arXiv:0904.0770
  82. 82.
    Hiller G, Kruger F (2004) More model-independent analysis of \(b \rightarrow s\) processes. Phys Rev D 69:074020.  https://doi.org/10.1103/PhysRevD.69.074020, arXiv:hep-ph/0310219
  83. 83.
    Bordone M, Isidori G, Pattori A (2016) On the standard model predictions for \(R_K\) and \(R_{K^*}\). Eur Phys J C 76:440.  https://doi.org/10.1140/epjc/s10052-016-4274-7, arXiv:1605.07633
  84. 84.
    Descotes-Genon S, Matias J, Virto J (2013) Understanding the \(B\rightarrow K^*\mu ^+\mu ^-\) anomaly. Phys Rev D 88:074002.  https://doi.org/10.1103/PhysRevD.88.074002, arXiv:1307.5683
  85. 85.
    Beaujean F, Bobeth C, van Dyk D (2014) Comprehensive Bayesian analysis of rare (semi)leptonic and radiative \(B\) decays. Eur Phys J C 74:2897.  https://doi.org/10.1140/epjc/s10052-014-3179-6, arXiv:1310.2478
  86. 86.
    Altmannshofer W, Straub DM (2015) New physics in \(b\rightarrow s\) transitions after LHC run 1. Eur Phys J C 75:382.  https://doi.org/10.1140/epjc/s10052-015-3602-7, arXiv:1411.3161
  87. 87.
    Descotes-Genon S, Hofer L, Matias J, Virto J (2016) Global analysis of \(b\rightarrow s\ell \ell \) anomalies. JHEP 06:092.  https://doi.org/10.1007/JHEP06(2016)092, arXiv:1510.04239
  88. 88.
    Hurth T, Mahmoudi F, Neshatpour S (2016) On the anomalies in the latest LHCb data. Nucl Phys B 909:737–777.  https://doi.org/10.1016/j.nuclphysb.2016.05.022, arXiv:1603.00865ADSCrossRefGoogle Scholar
  89. 89.
    Altmannshofer W, Niehoff C, Stangl P, Straub DM (2017) Status of the \(B\rightarrow K^*\mu ^+\mu ^-\) anomaly after Moriond 2017. Eur Phys J C 77:377.  https://doi.org/10.1140/epjc/s10052-017-4952-0, arXiv:1703.09189
  90. 90.
    Ciuchini M, Coutinho AM, Fedele M, Franco E, Paul A, Silvestrini L et al (2017) On flavourful easter eggs for new physics hunger and lepton flavour universality violation. Eur Phys J C 77:688.  https://doi.org/10.1140/epjc/s10052-017-5270-2, arXiv:1704.05447
  91. 91.
    Geng L-S, Grinstein B, Jäger S, Camalich JM, Ren X-L, Shi R-X (2017) Towards the discovery of new physics with lepton-universality ratios of \(b\rightarrow s\ell \ell \) decays. Phys Rev D 96:093006.  https://doi.org/10.1103/PhysRevD.96.093006, arXiv:1704.05446
  92. 92.
    Capdevila B, Crivellin A, Descotes-Genon S, Matias J, Virto J (2018) Patterns of new physics in \(b\rightarrow s\ell ^+\ell ^-\) transitions in the light of recent data. JHEP 01:093.  https://doi.org/10.1007/JHEP01(2018)093, arXiv:1704.05340
  93. 93.
    Altmannshofer W, Stangl P, Straub DM (2017) Interpreting hints for lepton flavor universality violation. Phys Rev D 96:055008.  https://doi.org/10.1103/PhysRevD.96.055008, arXiv:1704.05435
  94. 94.
    D’Amico G, Nardecchia M, Panci P, Sannino F, Strumia A, Torre R et al (2017) Flavour anomalies after the \(R_{K^*}\) measurement. JHEP 09:010.  https://doi.org/10.1007/JHEP09(2017)010, arXiv:1704.05438
  95. 95.
    Alok AK, Bhattacharya B, Datta A, Kumar D, Kumar J, London D (2017) New physics in \(b \rightarrow s \mu ^+ \mu ^-\) after the measurement of \(R_{K^*}\). Phys Rev D 96:095009.  https://doi.org/10.1103/PhysRevD.96.095009, arXiv:1704.07397
  96. 96.
    Buras AJ, Girrbach J (2013) Left-handed \(Z^{\prime }\) and \(Z\) FCNC quark couplings facing new \(b \rightarrow s \mu ^+ \mu ^-\) data. JHEP 12:009.  https://doi.org/10.1007/JHEP12(2013)009, arXiv:1309.2466
  97. 97.
    Gauld R, Goertz F, Haisch U (2014) An explicit Z’-boson explanation of the \(B \rightarrow K^* \mu ^+ \mu ^-\) anomaly. JHEP 01:069.  https://doi.org/10.1007/JHEP01(2014)069, arXiv:1310.1082
  98. 98.
    Buras AJ, De Fazio F, Girrbach J (2014) 331 models facing new \(b \rightarrow s\mu ^+ \mu ^-\) data. JHEP 02:112.  https://doi.org/10.1007/JHEP02(2014)112, arXiv:1311.6729
  99. 99.
    Altmannshofer W, Gori S, Pospelov M, Yavin I (2014) Quark flavor transitions in \(L_\mu -L_\tau \) models. Phys Rev D 89:095033.  https://doi.org/10.1103/PhysRevD.89.095033, arXiv:1403.1269
  100. 100.
    Crivellin A, D’Ambrosio G, Heeck J (2015) Explaining \(h\rightarrow \mu ^\pm \tau ^\mp \), \(B\rightarrow K^* \mu ^+\mu ^-\) and \(B\rightarrow K \mu ^+\mu ^-/B\rightarrow K e^+e^-\) in a two-Higgs-doublet model with gauged \(L_\mu -L_\tau \). Phys Rev Lett 114:151801.  https://doi.org/10.1103/PhysRevLett.114.151801, arXiv:1501.00993
  101. 101.
    Crivellin A, D’Ambrosio G, Heeck J (2015) Addressing the LHC flavor anomalies with horizontal gauge symmetries. Phys Rev D 91:075006.  https://doi.org/10.1103/PhysRevD.91.075006, arXiv:1503.03477
  102. 102.
    Celis A, Fuentes-Martin J, Jung M, Serôdio H (2015) Family nonuniversal \(Z^\prime \) models with protected flavor-changing interactions. Phys Rev D 92:015007.  https://doi.org/10.1103/PhysRevD.92.015007, arXiv:1505.03079
  103. 103.
    Belanger G, Delaunay C, Westhoff S (2015) A dark matter relic from muon anomalies. Phys Rev D 92:055021.  https://doi.org/10.1103/PhysRevD.92.055021, arXiv:1507.06660
  104. 104.
    Falkowski A, Nardecchia M, Ziegler R (2015) Lepton flavor non-universality in B-meson decays from a U(2) flavor model. JHEP 11:173.  https://doi.org/10.1007/JHEP11(2015)173, arXiv:1509.01249
  105. 105.
    Carmona A, Goertz F (2016) Lepton flavor and nonuniversality from minimal composite higgs setups. Phys Rev Lett 116:251801.  https://doi.org/10.1103/PhysRevLett.116.251801, arXiv:1510.07658
  106. 106.
    Allanach B, Queiroz FS, Strumia A, Sun S (2016) \(Z?\) models for the LHCb and \(g-2\) muon anomalies. Phys Rev D 93:055045.  https://doi.org/10.1103/PhysRevD.95.119902, arXiv:1511.07447
  107. 107.
    Chiang C-W, He X-G, Valencia G (2016) Z? model for b?s?\(\overline{?}\) flavor anomalies. Phys Rev D 93:074003.  https://doi.org/10.1103/PhysRevD.93.074003, arXiv:1601.07328
  108. 108.
    Boucenna SM, Celis A, Fuentes-Martin J, Vicente A, Virto J (2016) Non-abelian gauge extensions for B-decay anomalies. Phys Lett B 760:214–219.  https://doi.org/10.1016/j.physletb.2016.06.067, arXiv:1604.03088ADSCrossRefGoogle Scholar
  109. 109.
    Megias E, Panico G, Pujolas O, Quiros M (2016) A natural origin for the LHCb anomalies. JHEP 09:118.  https://doi.org/10.1007/JHEP09(2016)118, arXiv:1608.02362
  110. 110.
    Boucenna SM, Celis A, Fuentes-Martin J, Vicente A, Virto J (2016) Phenomenology of an \(SU(2) \times SU(2) \times U(1)\) model with lepton-flavour non-universality. JHEP 12:059.  https://doi.org/10.1007/JHEP12(2016)059, arXiv:1608.01349
  111. 111.
    Altmannshofer W, Gori S, Profumo S, Queiroz FS (2016) Explaining dark matter and B decay anomalies with an \(L_\mu - L_\tau \) model. JHEP 12:106.  https://doi.org/10.1007/JHEP12(2016)106, arXiv:1609.04026
  112. 112.
    Crivellin A, Fuentes-Martin J, Greljo A, Isidori G (2017) Lepton flavor non-universality in B decays from dynamical yukawas. Phys Lett B 766:77–85.  https://doi.org/10.1016/j.physletb.2016.12.057, arXiv:1611.02703ADSCrossRefGoogle Scholar
  113. 113.
    Garcia IG (2017) LHCb anomalies from a natural perspective. JHEP 03:040.  https://doi.org/10.1007/JHEP03(2017)040, arXiv:1611.03507
  114. 114.
    Bhatia D, Chakraborty S, Dighe A (2017) Neutrino mixing and \(R_K\) anomaly in U(1)\(_X\) models: a bottom-up approach. JHEP 03:117.  https://doi.org/10.1007/JHEP03(2017)117, arXiv:1701.05825
  115. 115.
    Cline JM, Cornell JM, London D, Watanabe R (2017) Hidden sector explanation of \(B\) -decay and cosmic ray anomalies. Phys Rev D 95:095015.  https://doi.org/10.1103/PhysRevD.95.095015, arXiv:1702.00395
  116. 116.
    Baek S (2018) Dark matter contribution to \(b\rightarrow s \mu ^+ \mu ^-\) anomaly in local \(U(1)_{L_\mu -L_\tau }\) model. Phys Lett B 781:376–382.  https://doi.org/10.1016/j.physletb.2018.04.012, arXiv:1707.04573ADSCrossRefGoogle Scholar
  117. 117.
    Cline JM, Camalich JM (2017) \(B\) decay anomalies from nonabelian local horizontal symmetry. Phys Rev D 96:055036.  https://doi.org/10.1103/PhysRevD.96.055036, arXiv:1706.08510
  118. 118.
    Di Chiara S, Fowlie A, Fraser S, Marzo C, Marzola L, Raidal M et al (2017) Minimal flavor-changing \(Z^{\prime }\) models and muon \(g-2\) after the \(R_{K^*}\) measurement. Nucl Phys B 923:245–257.  https://doi.org/10.1016/j.nuclphysb.2017.08.003, arXiv:1704.06200ADSCrossRefGoogle Scholar
  119. 119.
    Kamenik JF, Soreq Y, Zupan J (2018) Lepton flavor universality violation without new sources of quark flavor violation. Phys Rev D 97:035002.  https://doi.org/10.1103/PhysRevD.97.035002, arXiv:1704.06005
  120. 120.
    Ko P, Omura Y, Shigekami Y, Yu C (2017) LHCb anomaly and B physics in flavored \(Z^\prime \) models with flavored Higgs doublets. Phys Rev D 95:115040.  https://doi.org/10.1103/PhysRevD.95.115040, arXiv:1702.08666
  121. 121.
    Ko P, Nomura T, Okada H (2017) Explaining \(B\rightarrow K^{(*)}\ell ^+ \ell ^-\) anomaly by radiatively induced coupling in \(U(1)_{\mu -\tau }\) gauge symmetry. Phys Rev D 95:111701.  https://doi.org/10.1103/PhysRevD.95.111701, arXiv:1702.02699
  122. 122.
    Alonso R, Cox P, Han C, Yanagida TT (2017) Anomaly-free local horizontal symmetry and anomaly-full rare B-decays. Phys Rev D 96:071701.  https://doi.org/10.1103/PhysRevD.96.071701, arXiv:1704.08158
  123. 123.
    Ellis J, Fairbairn M, Tunney P (2018) Anomaly-free models for flavour anomalies. Eur Phys J C 78:238.  https://doi.org/10.1140/epjc/s10052-018-5725-0, arXiv:1705.03447
  124. 124.
    Alonso R, Cox P, Han C, Yanagida TT (2017) Flavoured \(B-L\) local symmetry and anomalous rare \(B\) decays. Phys Lett B 774:643–648.  https://doi.org/10.1016/j.physletb.2017.10.027, arXiv:1705.03858ADSCrossRefGoogle Scholar
  125. 125.
    Carmona A, Goertz F (2018) Recent \(\varvec {B}\) physics anomalies: a first hint for compositeness? Eur Phys J C 78:979.  https://doi.org/10.1140/epjc/s10052-018-6437-1, arXiv:1712.02536

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di FisicaLa Sapienza, University of RomeRomeItaly

Personalised recommendations