Voting for Locating Facilities: The Wisdom of Voters

  • Mozart B. C. Menezes
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 281)


In this chapter we discuss the quality of decisions made by stakeholders with voting rights under some assumptions on their intention of maximising their own personal utility rather than the common good. In especial, we focus on decisions made by a particular social choice mechanism, Condorcet method, and how good are the voted decisions when compared to those of a central decision maker. Thus, this chapter brings to the front row the opposing views of centralised versus decentralised decision making. It makes a review of the state of the art in this subject, and highlights very recent results, in especial, the work presented in Menezes and Huang (Comput Oper Res 62:350–355, 2015), Drezner and Menezes (Ann Oper Res 246:205–226, 2014) and Menezes et al. (Eur J Oper Res 253:195–203, 2016).


  1. Alós-Ferrer, C., & Granić, D. (2012). Two field experiments on approval voting in Germany. Social Choice & Welfare, 39(1), 171–205.CrossRefGoogle Scholar
  2. Arrow, K. J. (2012). Social choice and individual values (3rd ed.), New Haven, CT: Yale University Press.Google Scholar
  3. Balinski, M., & Laraki, R. (2014). Judge: Don’t vote. Operations Research, 62(3), 483–511.CrossRefGoogle Scholar
  4. Bandelt, H. J., & Labbe, M. (1986). How bad can a voting location be. Social Choice & Welfare, 3, 125–145.CrossRefGoogle Scholar
  5. Baron, J., Altman, N. Y., & Kroll, S. (2005). Approval voting and parochialism. Journal of Conflict Resolution, 49(6), 895–907.CrossRefGoogle Scholar
  6. Berman, O., Drezner, T., Drezner, Z., & Krass, D. (2009). Modeling competitive facility location problems: New approaches and results. In M. Oskoorouchi (Ed.), TutORials in Operations Research (pp. 156–181). San Diego: INFORMS.Google Scholar
  7. Bhadury, J., Griffin, P. M., Griffin, S. O., & Narasimhan, L. S. (1998). Finding the majority-rule equilibrium under lexicographic comparison of candidates. Social Choice & Welfare, 15(4), 489–508.CrossRefGoogle Scholar
  8. Brams, S., & Fishburn, P. C. (1978). Approval voting. American Political Science Review, 72, 831–847.CrossRefGoogle Scholar
  9. Brams, S. J., & Fishburn, P. C. (2001). A nail-biting election. Social Choice & Welfare, 18(3), 409–414.CrossRefGoogle Scholar
  10. Brams, S. J., & Fishburn, P. C. (2007). Approval voting. New York, NY: Springer.Google Scholar
  11. Buechel, B., (2014). Condorcet winners on median spaces. Social Choice & Welfare, 42(3), 735–750.CrossRefGoogle Scholar
  12. Buenrostro, L., Dhillon, A., & Vida, P. (2013). Scoring rule voting games and dominance solvability. Social Choice & Welfare, 40(2), 329–352.CrossRefGoogle Scholar
  13. Drezner, T. (1994a). Locating a single new facility among existing unequally attractive facilities. Journal of Regional Science, 34, 237–252.CrossRefGoogle Scholar
  14. Drezner, T. (1994b). Optimal continuous location of a retail facility, facility attractiveness, and market share: An interactive model. Journal of Retailing, 70, 49–64.CrossRefGoogle Scholar
  15. Drezner, Z. (1982). Competitive location strategies for two facilities. Regional Science and Urban Economics, 12, 485–493.CrossRefGoogle Scholar
  16. Drezner, Z. (1996). A note on accelerating the Weiszfeld procedure. Location Science, 3, 275–279.CrossRefGoogle Scholar
  17. Drezner, Z., Klamroth, K., Schöbel, A., & Wesolowsky, G. O. (2002). The Weber problem. In Z. Drezner & H. W. Hamacher (Eds.), Facility location: Applications and theory (pp. 1–36). Berlin: Springer.CrossRefGoogle Scholar
  18. Drezner, Z., & Menezes, M. (2014). The wisdom of voters: Evaluating the weber objective in the plane at the Condorcet solution. Annals of Operations Research, 246, 205–226.CrossRefGoogle Scholar
  19. Drezner, Z., & Suzuki, A. (2004). The big triangle small triangle method for the solution of non-convex facility location problems. Operations Research, 52, 128–135.CrossRefGoogle Scholar
  20. Eiselt, H. A., Marianov, V., & Drezner, T. (2015). In G. Laport, S. Nickel, & F. S. Gama (Eds.), Location science. Berlin: Springer International Publishing.Google Scholar
  21. Eiselt, H. A., & Sandblom, C.-L. (2014). Decision analysis, location models, and scheduling problems. Berlin: Springer.Google Scholar
  22. Francis, R. L., Lowe, T. J., Rayco, M. B., & Tamir, A. (2009). Aggregation error for location models: Survey and analysis. Annals of Operations Research, 167, 171–208.CrossRefGoogle Scholar
  23. Francis, R. L., McGinnis, L. F. Jr., & White, J. A. (1992). Facility layout and location: An analytical approach (2nd ed.). Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  24. Galton, F. (1907). Vox populi. Nature, 75, 450–451.CrossRefGoogle Scholar
  25. Gouret, F., Hollard, G., & Rossignol, S. (2011). An empirical analysis of valence in electoral competition. Social Choice & Welfare, 37(2), 309–340.CrossRefGoogle Scholar
  26. Hakimi, S. L. (1983). On locating new facilities in a competitive environment. European Journal of Operational Research, 12, 29–35.CrossRefGoogle Scholar
  27. Hakimi, S. L. (1986). p-Median theorems for competitive location. Annals of Operations Research, 6, 77–98.CrossRefGoogle Scholar
  28. Hansen, P., & Thisse, J.-F. (1981). Outcomes of voting and planning. Journal of Public Economics, 16, 1–15.CrossRefGoogle Scholar
  29. Hardin, G. (1968). The tragedy of the commons. Science, 162(3859), 1243–1248.CrossRefGoogle Scholar
  30. Henry, M., & Mourifié, I. (2013). Euclidean revealed preferences: Testing the spatial voting model. Journal of Applied Econometrics, 28(4), 650–666.CrossRefGoogle Scholar
  31. Hotelling, H. (1929). Stability in competition. Economic Journal, 39, 41–57.CrossRefGoogle Scholar
  32. Huff, D. L. (1964). Defining and estimating a trade area. Journal of Marketing, 28, 34–38.CrossRefGoogle Scholar
  33. Huff, D. L. (1966). A programmed solution for approximating an optimum retail location. Land Economics, 42, 293–303.CrossRefGoogle Scholar
  34. Klamler, C., & Pferschy, U. (2007). The traveling group problem. Social Choice & Welfare, 29(3), 429–452.CrossRefGoogle Scholar
  35. Knoblauch, V. (2001). Using elections to represent preferences. Social Choice & Welfare, 18(4), 823–831.CrossRefGoogle Scholar
  36. Labbé, M. (1985). Outcomes of voting and planning facility location problems in single facility location problems. European Journal of Operational Research, 20, 299–313.CrossRefGoogle Scholar
  37. Love, R. F., Morris, J. G., & Wesolowsky, G. O. (1988). Facilities location: Models & methods. New York, NY: North Holland.Google Scholar
  38. Menezes, M. B. C., & Huang, R. (2015). Comparison of Condorcet and Weber solutions on a plane: Social choice versus centralization. Computers & Operations Research, 62, 350–355.CrossRefGoogle Scholar
  39. Menezes, M. B. C., Silveira, G. J. C., & Drezner, Z. (2016). Democratic elections and centralized decisions: Condorcet and approval voting compared with median and coverage locations. European Journal of Operational Research, 253, 195–203.CrossRefGoogle Scholar
  40. Merrill-III, S. (1985). A statistical model for Condorcet efficiency based on simulation under spatial model assumptions. Public Choice, 47(2), 389–403.CrossRefGoogle Scholar
  41. Mueller, D. C., Philpotts, G. C., & Vanek, J. (1972). The social gains from exchanging votes: A simulation approach. Public Choice, 13(1), 55–79.CrossRefGoogle Scholar
  42. Noltemeier, H., Spoerhase, J., & Wirth, H.-C. (2007). Multiple voting location and single voting location on trees. European Journal of Operational Research, 181, 654–677.CrossRefGoogle Scholar
  43. Plassmann, F., & Tideman, T. N. (2014). How frequently do different voting rules encounter voting paradoxes in three-candidate elections? Social Choice & Welfare, 42(1), 31–75.CrossRefGoogle Scholar
  44. Posamentier, A., & Lehmann, I. (2012). The secrets of triangles: A mathematical journey. Amherst, NY: Prometheus Books.Google Scholar
  45. Pritchard, G., & Slinko, A. (2006). On the average minimum size of a manipulating coalition. Social Choice & Welfare, 27(2), 263–277.CrossRefGoogle Scholar
  46. Rapoport, A., & Felsenthal, D. S. (1990). Efficacy in small electorates under plurality and approval voting. Public Choice, 64(1), 57–71.CrossRefGoogle Scholar
  47. Reilly, W. J. (1931). The law of retail gravitation. New York, NY: Knickerbocker Press.Google Scholar
  48. Rich, L. (2010). Tapping the wisdom of the crowd. New York: The New York Times.Google Scholar
  49. Rodríguez, C. M. C., & Pérez, J. A. M. (2000). Comparison of α-Condorcet points with median and center locations. Sociaded de Estadistica e Investigacion Operativa TOP, 8, 215–234.Google Scholar
  50. Rodríguez, C. M. C., & Pérez, J. A. M. (2008). Multiple voting location problems. European Journal of Operational Research, 191, 437–453.CrossRefGoogle Scholar
  51. Schulman, M. (2018). Why the electoral college – History central website. Available at (2018)
  52. Sinopoli, F. D. (2000). Sophisticated voting and equilibrium refinements under plurality rule. Social Choice & Welfare, 17, 655–672.CrossRefGoogle Scholar
  53. Surowiecki, J. (2004). The wisdom of crowds. New York, NY: Doubleday.Google Scholar
  54. Taylor, A. D., & Pacelli, A. (2008). Mathematics and politics (2nd ed.). New York, NY: Springer Science +  Business Media, LLC.CrossRefGoogle Scholar
  55. Weiszfeld, E. (1936). Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Mathematical Journal, 43, 355–386.Google Scholar
  56. Weiszfeld, E., & Plastria, F. (2009). On the point for which the sum of the distances to n given points is minimum. Annals of Operations Research, 167, 7–41.CrossRefGoogle Scholar
  57. Wendel, R. E., & Thorson, S. J. (1974). Some generalizations of social decisions under majority rules. Econometrica, 42, 893–912.CrossRefGoogle Scholar
  58. Wendell, R. E., & Hurter, A. P. (1973). Location theory, dominance and convexity. Operations Research, 21, 314–320.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mozart B. C. Menezes
    • 1
  1. 1.NEOMA Business School – Rouen/Paris/ReimsMont-Saint-AignanFrance

Personalised recommendations