A Steady-State Game of a Net-Zero Emission Climate Regime

  • Olivier BahnEmail author
  • Alain Haurie
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 280)


In this paper we propose a very simple steady-state game model that represents schematically interactions between coalitions of countries in achieving a necessary net-zero emission of GHGs in order to stabilize climate over the long term. We start from a situation where m coalitions exist and behave as m players in a game of sharing a global emission budget that can only be maintained by negative emission activities. We compare a fully “cooperative” solution with a Nash equilibrium solution implemented through an international emission trading scheme. We characterize the fully cooperative and Nash equilibrium solutions for this game in a deterministic context.


Carbon capture and storage Carbon dioxide removal Climate change Mitigation Integrated assessment Steady-state game 



This research has been supported by the Natural Sciences and Engineering Research Council of Canada (O. Bahn) and the Qatar National Research Foundation (A. Haurie).


  1. Allen, M. R., Frame, D. J., Huntingford, C., Jones, C. D., Lowe, J. A., Meinshause, M., et al. (2009). Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature, 458, 1163–1166.Google Scholar
  2. Andrey, C., Bahn, O., & Haurie, A. (2016). Computing α-robust equilibria in two integrated assessment models for climate change. In F. Thuijsman & F. Wagener (Eds.), Advances in dynamic and evolutionary games (Vol. 14, pp. 283–300). Cham: Springer.Google Scholar
  3. Bahn, O. (2010). Combining adaptation and mitigation: A game theoretic approach. INFOR, 48, 193–201.Google Scholar
  4. Bahn, O., Chesney, M., & Gheyssens, J. (2012). The effect of proactive adaptation on green investment. Environmental Science and Policy, 18, 9–24.Google Scholar
  5. Bahn, O., Chesney, M., Gheyssens, J., Knutti, R., & Pana, A. (2015). Is there room for geoengineering in the optimal climate policy mix? Environmental Science and Policy, 48, 67–76.Google Scholar
  6. Bahn, O., & Haurie, A. (2008). A class of games with coupled constraints to model international GHG emission agreements. International Game Theory Review, 10(4), 337–362.Google Scholar
  7. Bahn, O., & Haurie, A. (2016). A cost-effectiveness differential game model for climate agreements. Dynamic Games and Applications, 6(1), 1–19.Google Scholar
  8. Bahn, O., Haurie, A., & Malhamé, R. (2008). A stochastic control model for optimal timing of climate policies. Automatica, 44, 1545–1558.Google Scholar
  9. Bahn, O., Haurie, A., & Malhamé, R. (2009). A stochastic control/game approach to the optimal timing of climate policies. In J. Filar & A. Haurie (Eds.), Uncertainty and environmental decision making: A handbook of research and best practice. International series in operations research & management science (Vol. 138, pp. 211–237). Boston: Springer.Google Scholar
  10. Bahn, O., Haurie, A., & Malhamé, R. (2017). Limit game models for climate change negotiations. In J. Apaloo & B. Viscolani (Eds.), Advances in dynamic and mean field games (Vol. 15, pp. 27–48). Cham: Springer.Google Scholar
  11. Carlson, D. A., & Haurie, A. (1995). A turnpike theory for infinite horizon open-loop differential games with decoupled dynamics. In G. J. Olsder (Ed.), New trends in dynamic games and applications. Annals of the international society of dynamic games (Vol. 3, pp. 353–376). Boston: Birkhäuser.Google Scholar
  12. Carlson, D. A., Haurie, A., & Leizarowitz, A. (1991). Infinite horizon optimal control: Deterministic and stochastic systems (Vol. 332). New York: Springer.Google Scholar
  13. EASAC. (2018). Negative emission technologies: What role in meeting Paris agreement targets? Technical report, EASAC, Secretariat Deutsche Akademie der Naturforscher Leopoldina German National Academy of Sciences Jägerberg 1 D-06108 Halle (Saale).Google Scholar
  14. Ferris, M. C., & Munson, T. S. (2000). Complementarity problems in GAMS and the PATH solver. Journal of Economic Dynamics and Control, 24, 165–188.Google Scholar
  15. Hallegatte, S., Rogelj, J., Allen, M., Clarke, L., Edenhofer, O., Field, C. B., et al. (2016). Mapping the climate change challenge. Nature Climate Change, 6(7), 663–668.Google Scholar
  16. Haurie, A. (2002). Turnpikes in multidiscount rate environments and GCC policy evaluation. In G. Zaccour (Ed.), Optimal control and differential games (pp. 39–52). Dordrecht: Kluwer.Google Scholar
  17. Haurie, A. (2003). Integrated assessment modeling for global climate change: An infinite horizon optimization viewpoint. Environmental Modeling and Assessment, 8(3), 117–132.Google Scholar
  18. Haurie, A. (2005a). Hierarchical and asymptotic optimal control models for economic sustainable development. In C. Deissenberg & R. Hartl (Eds.), Optimal control and dynamic games (pp. 61–76). Dordrecht: Kluwer.Google Scholar
  19. Haurie, A. (2005b). A multigenerational game model to analyze sustainable development. Annals of Operations Research, 137, 369–386.Google Scholar
  20. Haurie, A., & Moresino, F. (2008). Singularly perturbed piecewise deterministic games. SIAM Journal on Control and Optimization, 47(1), 73–91.Google Scholar
  21. Helm, C. (2003). International emissions trading with endogenous allowance choices. Journal of Public Economics, 87, 2737–2747.Google Scholar
  22. Knutti, R., Rogelj, J., Sedlacek, J., & Fischer, E. M. (2016). A scientific critique of the two-degree climate change target. Nature Geoscience, 9(1), 13–18.Google Scholar
  23. Mathesius, S., Hofmann, M., Caldeira, K., & Schellnhuber, H.-J. (2015). Long-term response of oceans to CO2 removal from the atmosphere. Nature Climate Change, 5(12), 1107–1113.Google Scholar
  24. Meadowcroft, J. (2013). Exploring negative territory carbon dioxide removal and climate policy initiatives. Climatic Change, 118(1), 137–149.Google Scholar
  25. Nordhaus, W. D. (1992). An optimal path for controlling greenhouses gases. Science, 258, 315–1319.Google Scholar
  26. Nordhaus, W. D. (1994). Managing the global commons: The economics of climate change. Cambridge: MIT Press.Google Scholar
  27. Nordhaus, W. D., & Boyer, J. (2000). Warming the world: Economic models of global warming. Cambridge: MIT Press.Google Scholar
  28. Nordhaus, W. D., & Yang, Z. (1996). RICE - A regional dynamic general equilibrium model of alternative climate change strategies. American Economic Review, 86, 741–765.Google Scholar
  29. Shell-Corp. (2016). A better life with a healthy planet: Pathways to net-zero emissions. Technical report, Royal Dutch Shell.Google Scholar
  30. Shell-Corp. (2018). Shell scenarios Sky: Meeting the goals of the Paris agreement. Technical report, Royal Dutch Shell.Google Scholar
  31. Tavoni, M., & Socolow, R. (2013). Modeling meets science and technology: An introduction to a special issue on negative emissions. Climatic Change, 118(1), 1–14.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.GERAD and Department of Decision SciencesHEC MontréalMontréalCanada
  2. 2.ORDECSYSChêne-BougeriesSwitzerland
  3. 3.University of GenevaGenevaSwitzerland
  4. 4.GERADHEC MontréalMontréalCanada

Personalised recommendations