Energy Crop at Heavy Metal-Contaminated Arable Land as an Alternative for Food and Feed Production: Biomass Quantity and Quality



Anthropogenic impacts, for example residues from mining, industrial processes such as smelting or overuse of pesticides and fertilisation, are causing degradation and elevated heavy metal concentrations in farmland soils. Food or feed crops grown on this land can become contaminated with heavy metals with their consumption potentially leading to the accumulation of contaminants in human or animal populations, causing both chronic and acute health problems. Arable soils contaminated with heavy metals have a negative influence on regional economies by restricting sustainable agricultural development and the trade of goods. Second-generation bioenergy crops, based on perennial lignocellulosic crop species, are considered to be the future of the bioenergy industry and are the focus of intense research. Perennial energy crops have a low demand for nutrient inputs and higher lignin and cellulose contents than the biomass of annual crops. Moreover, they appear to be a viable economic alternative to food or feed production at heavy metal-contaminated arable lands. Besides offering an immediate cash crop for polluted soils, their deployment may eventually lead to the future recovery of those areas for arable crops thanks to their capacity for phytoremediation.

This chapter presents an overview of the cultivation possibilities of different second-generation energy crop species on heavy metal-contaminated soils, with an emphasis on their impact on biomass yield and elemental composition. In addition, potential end uses of this contaminated biomass, using thermal and biochemical conversion, are reviewed and discussed from the energy generation and post-processing residue disposal point of view.


Heavy metal soil contamination Energy crops Heavy metals Biomass conversion technology 



This work was supported by the EU Seventh FP (grant number 610797), Polish Ministry of Science and Higher Education (Institute for Ecology of Industrial Areas statutory funds) and The Polish National Centre for Research and Development (grant agreement No. FACCE SURPLUS/MISCOMAR/01/16) under the flag of Era-Net Cofund FACCE SURPLUS, in the frame of the Joint Programming Initiative on Agriculture, Food Security and Climate Change (FACCE-JPI).


  1. Aderholt M, Vogelien DL, Koether M, Greipsson S (2017) Phytoextraction of contaminated urban soils by Panicum virgatum L. enhanced with application of a plant growth regulator (BAP) and citric acid. Chemosphere 175:85–96PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alkorta I, Becerri JM, Garbisu C (2010) Recovery of soil health: the ultimate goal of soil remediation processes. In: Płaza G (ed) Trends in bioremediation and phytoremediation. Research Signpost, India, pp 1–9Google Scholar
  3. Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Heavy metals in soils. Springer, Dordrecht, pp 11–50CrossRefGoogle Scholar
  4. Ameen A, Tang C, Han L, Xie GH (2018) Short-term response of switchgrass to nitrogen, phosphorus, and potassium on semiarid sandy wasteland managed for biofuel feedstock. Bioenergy Res 11(1):228–238CrossRefGoogle Scholar
  5. Angelini LG, Ceccarini L, o Di Nasso NN, Bonari E (2009) Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: analysis of productive characteristics and energy balance. Biomass Bioenergy 33(4):635–643CrossRefGoogle Scholar
  6. Antonkiewicz J, Jasiewicz C, Lošák T (2006) Wykorzystanie ślazowca pensylwańskiego do ekstrakcji metali ciężkich z gleby. Acta Sci Pol Formatio Circumiectus 1(5):63–73Google Scholar
  7. Antonkiewicz J, Kołodziej B, Bielińska EJ (2017) Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita. Int J Phytoremediation 19(4):309–318PubMedCrossRefGoogle Scholar
  8. Appels L, Lauwers J, Degrève J, Helsen L, Lievens B, Willems K et al (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sust Energ Rev 15(9):4295–4301CrossRefGoogle Scholar
  9. Barbosa B, Fernando AL, Lino J, Costa J, Sidella S, Boléo S, et al. (2013) Phytoremediation response of Arundodonax L. in soils contaminated with Zinc and Chromium. In: Proceedings of the 21st European Biomass Conference and Exhibition, Setting the course for a Biobased Economy. Copenhagen, Denmark, pp 3–7Google Scholar
  10. Barbosa B, Boléo S, Sidella S, Costa J, Duarte MP, Mendes B et al (2015) Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. Bioenergy Res 8(4):1500–1511CrossRefGoogle Scholar
  11. Baxter XC, Darvell LI, Jones JM, Barraclough T, Yates NE, Shield I (2014) Miscanthus combustion properties and variations with Miscanthus agronomy. Fuel 117:851–869CrossRefGoogle Scholar
  12. Boakye-Boaten NA, Xiu S, Shahbazi A, Wang L, Li R, Mims M, Schimmel K (2016) Effects of fertilizer application and dry/wet processing of Miscanthus x giganteus on bioethanol production. Bioresour Technol 204:98–105PubMedCrossRefGoogle Scholar
  13. Boe A, Owens V, Gonzalez-Hernandez J, Stein J, Lee DK, Koo BC (2009) Morphology and biomass production of prairie cordgrass on marginal lands. GCB Bioenergy 1(3):240–250CrossRefGoogle Scholar
  14. Borkowska H, Molas R (2012) Two extremely different crops, Salix and Sida, as sources of renewable bioenergy. Biomass Bioenergy 36:234–240CrossRefGoogle Scholar
  15. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4(1):1–73CrossRefGoogle Scholar
  16. Carroll JP, Finnan JM, Biedermann F, Brunner T, Obernberger I (2015) Air staging to reduce emissions from energy crop combustion in small scale applications. Fuel 155:37–43CrossRefGoogle Scholar
  17. Castaldi P, Silvetti M, Manzano R, Brundu G, Roggero PP, Garau G (2018) Mutual effect of Phragmites australis, Arundo donax and immobilization agents on arsenic and trace metals phytostabilization in polluted soils. Geoderma 314:63–72CrossRefGoogle Scholar
  18. Chen BC, Lai HY, Juang KW (2012) Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass. Ecotoxicol Environ Saf 80:393–400PubMedCrossRefGoogle Scholar
  19. Christian DG, Yates NE, Riche AB (2006) The effect of harvest date on the yield and mineral content of Phalaris arundinacea L.(reed canary grass) genotypes screened for their potential as energy crops in southern England. J Sci Food Agric 86(8):1181–1188CrossRefGoogle Scholar
  20. Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus× giganteus grown as a biofuel for 14 successive harvests. Ind Crop Prod 28(3):320–327CrossRefGoogle Scholar
  21. Čížková H, Rychterová J, Hamadejová L, Suchý K, Filipová M, Květ J, Anderson NO (2015) Biomass production in permanent wet grasslands dominated with Phalaris arundinacea: case study of the Třeboň basin biosphere reserve, Czech Republic. In: The role of natural and constructed wetlands in nutrient cycling and retention on the landscape. Springer, Cham, pp 1–16Google Scholar
  22. Clifton-Brown J, Hastings A, Mos M, McCalmont JP, Ashman C, Awty-Carroll D et al (2017) Progress in upscaling Miscanthus biomass production for the European bio-economy with seed-based hybrids. GCB Bioenergy 9(1):6–17CrossRefGoogle Scholar
  23. Corno L, Pilu R, Adani F (2014) Arundo donax L.: a non-food crop for bioenergy and bio-compound production. Biotechnol Adv 32(8):1535–1549PubMedCrossRefGoogle Scholar
  24. Cosentino SL, Scordia D, Sanzone E, Testa G, Copani V (2014) Response of giant reed (Arundo donax L.) to nitrogen fertilization and soil water availability in semi-arid Mediterranean environment. Eur J Agron 60:22–32CrossRefGoogle Scholar
  25. Dierking RM, Allen DJ, Cunningham SM, Brouder SM, Volenec JJ (2017) Nitrogen reserve pools in two Miscanthus × giganteus genotypes under contrasting N managements. Front Plant Sci 8:1618PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dohleman FG, Heaton EA, Arundale RA, Long SP (2012) Seasonal dynamics of above-and below-ground biomass and nitrogen partitioning in Miscanthus × giganteus and Panicum virgatum across three growing seasons. GCB Bioenergy 4(5):534–544CrossRefGoogle Scholar
  27. Dudka S, Piotrowska M, Chlopecka A, Witek T (1995) Trace metal contamination of soils and crop plants by the mining and smelting industry in Upper Silesia, South Poland. J Geochem Explor 52(1–2):237–250CrossRefGoogle Scholar
  28. EC-European Commission (2006) Impact assessment of the thematic strategy on soil protection. Commission staff working document. SEC (2006)620 22.9.2006Google Scholar
  29. El Kasmioui O, Ceulemans R (2012) Financial analysis of the cultivation of poplar and willow for bioenergy. Biomass Bioenergy 43:52–64CrossRefGoogle Scholar
  30. Elia NM, Nokes SE, Flythe MD (2016) Switchgrass (Panicum virgatum) fermentation by Clostridium thermocellum and Clostridium saccharoperbutylacetonicum sequential culture in a continuous flow reactor. AIMS Energy 4(1):95CrossRefGoogle Scholar
  31. Fiorentino N, Fagnano M, Adamo P, Impagliazzo A, Mori M, Pepe O et al (2013) Assisted phytoextraction of heavy metals: compost and Trichoderma effects on giant reed (Arundo donax L.) uptake and soil N-cycle microflora. Ital J Agron 8(4):29CrossRefGoogle Scholar
  32. Galatowitsch SM, Anderson NO, Ascher PD (1999) Invasiveness in wetland plants in temperate North America. Wetlands 19(4):733–755CrossRefGoogle Scholar
  33. Ghisellini P, Cialani C, Ulgiati S (2016) A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J Clean Prod 114:11–32CrossRefGoogle Scholar
  34. Gleeson AM (2007) Phytoextraction of lead from contaminated soil by Panicum virgatum L. (Switchgrass) and associated growth responses. MS thesis, Department of Biology, Queen’s University, Kingston, ON, CanadaGoogle Scholar
  35. Goolsby JA, Moran P (2009) Host range of Tetramesa romana Walker (Hymenoptera: Eurytomidae), a potential biological control of giant reed, Arundo donax L. in North America. Biol Control 49(2):160–168CrossRefGoogle Scholar
  36. Guo J, Thapa S, Voigt T, Rayburn AL, Boe A, Lee DK (2015) Phenotypic and biomass yield variations in natural populations of prairie cordgrass (Spartina pectinata Link) in the USA. Bioenergy Res 8(3):1371–1383CrossRefGoogle Scholar
  37. Heidenreich S, Foscolo PU (2015) New concepts in biomass gasification. Prog Energy Combust Sci 46:72–95CrossRefGoogle Scholar
  38. Howaniec N, Smoliński A (2011) Steam gasification of energy crops of high cultivation potential in Poland to hydrogen-rich gas. Int J Hydrog Energy 36(3):2038–2043CrossRefGoogle Scholar
  39. Huang SS, Liao QL, Hua M, Wu XM, Bi KS, Yan CY et al (2007) Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere 67(11):2148–2155PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hultquist SJ, Vogel KP, Lee DJ, Arumuganathan K, Kaeppler S (1996) Chloroplast DNA and nuclear DNA content variations among cultivars of switchgrass, Panicum virgatum L. Crop Sci 36(4):1049–1052CrossRefGoogle Scholar
  41. Iqbal Y, Lewandowski I (2016) Comparison of different miscanthus genotypes for ash melting behaviour at different locations. In: Perennial biomass crops for a resource-constrained world. Springer, Cham, pp 157–165CrossRefGoogle Scholar
  42. Iqbal Y, Kiesel A, Wagner M, Nunn C, Kalinina O, Hastings AF et al (2017) Harvest time optimization for combustion quality of different Miscanthus genotypes across Europe. Front Plant Sci 8:727PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jablonowski ND, Kollmann T, Nabel M, Damm T, Klose H, Müller M et al (2017) Valorization of Sida (Sida hermaphrodita) biomass for multiple energy purposes. GCB Bioenergy 9(1):202–214CrossRefGoogle Scholar
  44. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182PubMedCrossRefGoogle Scholar
  45. Jasinskas A, Zaltauskas A, Kryzeviciene A (2008) The investigation of growing and using of tall perennial grasses as energy crops. Biomass Bioenergy 32(11):981–987CrossRefGoogle Scholar
  46. Jayaraman K, Gökalp I (2015) Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energy Convers Manag 89:83–91CrossRefGoogle Scholar
  47. Jensen E, Casler M, Farrar K, Finnan J, Lord R, Palmborg C, Donnison I (2018) Reed canary grass: from production to end use. In: Perennial grasses for bioenergy and bioproducts. Elsevier, Cambridge, MA, pp 153–174CrossRefGoogle Scholar
  48. Kabata-Pendias A (2010) Trace elements in soils and plants (4th ed). CRC press, Boca Raton, FLGoogle Scholar
  49. Kacprzak MJ, Rosikon K, Fijalkowski K, Grobelak A (2014) The effect of Trichoderma on heavy metal mobility and uptake by Miscanthus giganteus, Salix sp., Phalaris arundinacea, and Panicum virgatum. Appl Environ Soil Sci 2014:506142CrossRefGoogle Scholar
  50. Kasprzyk A, Leszczuk A, Domaciuk M, Szczuka E (2013) Stem morphology of the Sida hermaphrodita (L.) Rusby (Malvaceae). Modern Phytomorphol 4:25–25Google Scholar
  51. Kasprzyk A, Leszczuk A, Szczuka E (2014) Virginia mallow (Sida hermaphrodita (L.) Rusby)–properties and application. Modern Phytomorphol 6:91–91Google Scholar
  52. Kidd P, Mench M, Álvarez-López V, Bert V, Dimitriou I, Friesl-Hanl W et al (2015) Agronomic practices for improving gentle remediation of trace element-contaminated soils. Int J Phytoremediation 17(11):1005–1037PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kiesel A, Nunn C, Iqbal Y, Van der Weijde T, Wagner M, Özgüven M et al (2017) Site-specific management of miscanthus genotypes for combustion and anaerobic digestion: a comparison of energy yields. Front Plant Sci 8:347PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kim S, Rayburn AL, Parrish A, Lee DK (2012) Cytogeographic distribution and genome size variation in prairie cordgrass (Spartina pectinata Bosc ex Link). Plant Mol Biol Report 30(5):1073–1079CrossRefGoogle Scholar
  55. Kocoń A, Jurga B (2017) The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn. Environ Sci Pollut Res Int 24(5):4990–5000PubMedCrossRefPubMedCentralGoogle Scholar
  56. Korzeniowska J, Stanislawska-Glubiak E (2015) Phytoremediation potential of Miscanthus× giganteus and Spartina pectinata in soil contaminated with heavy metals. Environ Sci Pollut Res 22(15):11648–11657CrossRefGoogle Scholar
  57. Korzeniowska J, Stanislawska-Glubiak E (2017) Proposal of new convenient extractant for assessing phytoavailability of heavy metals in contaminated sandy soil. Environ Sci Pollut Res 24(17):14857–14866CrossRefGoogle Scholar
  58. Kowalczyk-Juśko A (2017) The influence of the ash from the biomass on the power boiler pollution. J Ecol Eng 18(6):200–204CrossRefGoogle Scholar
  59. Kowalczyk-Jusko A, Kulig R, Laskowski J (2011) The influence of moisture content of selected energy crops on the briquetting process parameters. Teka Komisji Motoryzacji i Energetyki Rolnictwa, vol 11Google Scholar
  60. Krzyżak J, Pogrzeba M, Rusinowski S, Clifton-Brown J, McCalmont JP, Kiesel A et al (2017) Heavy metal uptake by novel Miscanthus seed-based hybrids cultivated in heavy metal contaminated soil. Civil Environ Eng Rep 26(3):121–132CrossRefGoogle Scholar
  61. Kung CC, Zhang N (2015) Renewable energy from pyrolysis using crops and agricultural residuals: an economic and environmental evaluation. Energy 90:1532–1544CrossRefGoogle Scholar
  62. Laval-Gilly P, Henry S, Mazziotti M, Bonnefoy A, Comel A, Falla J (2017) Miscanthus x giganteus composition in metals and potassium after culture on polluted soil and its use as biofuel. Bioenergy Res 10(3):846–852CrossRefGoogle Scholar
  63. Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19(4):209–227CrossRefGoogle Scholar
  64. Lewandowski I, Clifton-Brown J, Trindade LM, van der Linden GC, Schwarz KU, Müller-Sämann K et al (2016) Progress on optimizing Miscanthus biomass production for the European bioeconomy: results of the EU FP7 project OPTIMISC. Front Plant Sci 7:1620PubMedPubMedCentralCrossRefGoogle Scholar
  65. Linde-Laursen IB (1993) Cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecific hybrid. Hereditas 119(3):297–300CrossRefGoogle Scholar
  66. Liu X, Song Q, Tang Y, Li W, Xu J, Wu J et al (2013) Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Sci Total Environ 463-464:530–540PubMedCrossRefPubMedCentralGoogle Scholar
  67. Liu YN, Guo ZH, Sun Y, Shi W, Han ZY, Xiao XY, Zeng P (2017) Stabilization of heavy metals in biochar pyrolyzed from phytoremediated giant reed (Arundo donax) biomass. Trans Nonferrous Metals Soc China 27(3):656–665CrossRefGoogle Scholar
  68. Lord RA (2015) Reed canarygrass (Phalaris arundinacea) outperforms Miscanthus or willow on marginal soils, brownfield and non-agricultural sites for local, sustainable energy crop production. Biomass Bioenergy 78:110–125CrossRefGoogle Scholar
  69. Mariani C, Cabrini R, Danin A, Piffanelli P, Fricano A, Gomarasca S et al (2010) Origin, diffusion and reproduction of the giant reed (Arundo donax L.): a promising weedy energy crop. Ann Appl Biol 157(2):191–202CrossRefGoogle Scholar
  70. Meers E, Van Slycken S, Adriaensen K, Ruttens A, Vangronsveld J, Du Laing G et al (2010) The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78(1):35–41PubMedCrossRefPubMedCentralGoogle Scholar
  71. Michalska K, Miazek K, Krzystek L, Ledakowicz S (2012) Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass. Bioresour Technol 119:72–78PubMedCrossRefPubMedCentralGoogle Scholar
  72. Mleczek M, Rutkowski P, Rissmann I, Kaczmarek Z, Golinski P, Szentner K et al (2010) Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenergy 34(9):1410–1418CrossRefGoogle Scholar
  73. Mudhoo A, Kumar S (2013) Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int J Environ Sci Technol 10(6):1383–1398CrossRefGoogle Scholar
  74. Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60(1–4):193–207CrossRefGoogle Scholar
  75. Nabel M, Barbosa DB, Horsch D, Jablonowski ND (2014) Energy crop (Sida hermaphrodita) fertilization using digestate under marginal soil conditions: a dose-response experiment. Energy Procedia 59:127–133CrossRefGoogle Scholar
  76. Nabel M, Temperton VM, Poorter H, Lücke A, Jablonowski ND (2016) Energizing marginal soils—the establishment of the energy crop Sida hermaphrodita as dependent on digestate fertilization, NPK, and legume intercropping. Biomass Bioenergy 87:9–16CrossRefGoogle Scholar
  77. Nackley LL, Kim SH (2015) A salt on the bioenergy and biological invasions debate: salinity tolerance of the invasive biomass feedstock Arundo donax. GCB Bioenergy 7(4):752–762CrossRefGoogle Scholar
  78. Naidu SL, Moose SP, Al-Shoaibi AK, Raines CA, Long SP (2003) Cold tolerance of C4 photosynthesis in Miscanthus× giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol 132(3):1688–1697PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nicholson FA, Smith SR, Alloway BJ, Carlton-Smith C, Chambers BJ (2003) An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci Total Environ 311(1–3):205–219PubMedCrossRefPubMedCentralGoogle Scholar
  80. Nsanganwimana F, Pourrut B, Mench M, Douay F (2014) Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J Environ Manage 143:123–134PubMedCrossRefGoogle Scholar
  81. Nsanganwimana F, Waterlot C, Louvel B, Pourrut B, Douay F (2016) Metal, nutrient and biomass accumulation during the growing cycle of Miscanthus established on metal-contaminated soils. J Plant Nutr Soil Sci 179(2):257–269CrossRefGoogle Scholar
  82. Nzihou A, Stanmore B (2013) The fate of heavy metals during combustion and gasification of contaminated biomass—a brief review. J Hazard Mater 256-257:56–66PubMedCrossRefGoogle Scholar
  83. Ollivier J, Wanat N, Austruy A, Hitmi A, Joussein E, Welzl G et al (2012) Abundance and diversity of ammonia-oxidizing prokaryotes in the root–rhizosphere complex of Miscanthus × giganteus grown in heavy metal-contaminated soils. Microbial Ecol 64(4):1038–1046CrossRefGoogle Scholar
  84. Orts WJ, McMahan CM (2016) Biorefinery developments for advanced biofuels from a sustainable array of biomass feedstocks: survey of recent biomass conversion research from agricultural research service. Bioenergy Res 9(2):430–446CrossRefGoogle Scholar
  85. Parawira W, Read JS, Mattiasson B, Björnsson L (2008) Energy production from agricultural residues: high methane yields in pilot-scale two-stage anaerobic digestion. Biomass Bioenergy 32(1):44–50CrossRefGoogle Scholar
  86. Patel M, Zhang X, Kumar A (2016) Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: a review. Renew Sust Energ Rev 53:1486–1499CrossRefGoogle Scholar
  87. Pavel PB, Puschenreiter M, Wenzel WW, Diacu E, Barbu CH (2014) Aided phytostabilization using Miscanthus sinensis× giganteus on heavy metal-contaminated soils. Sci Total Environ 479:125–131PubMedCrossRefGoogle Scholar
  88. Pinto F, Lopes H, André RN, Gulyurtlu I, Cabrita I (2008) Effect of catalysts in the quality of syngas and by-products obtained by co-gasification of coal and wastes. 2: heavy metals, sulphur and halogen compounds abatement. Fuel 87(7):1050–1062CrossRefGoogle Scholar
  89. Pogrzeba M, Rusinowski S, Sitko K, Krzyżak J, Skalska A, Małkowski E et al (2017a) Relationships between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation. Environ Pollut 225:163–174PubMedCrossRefGoogle Scholar
  90. Pogrzeba M, Rusinowski S, Krzyżak J (2017b) Macroelements and heavy metals content in Panicum virgatum cultivated on contaminated soil under different fertilization. Int J Agric For 63(1):69–76Google Scholar
  91. Pogrzeba M, Krzyżak J, Rusinowski S, Werle S, Hebner A, Milandru A (2018a) Case study on phytoremediation driven energy crop production using Sida hermaphrodita. Int J Phytoremediation 20(12)CrossRefGoogle Scholar
  92. Pogrzeba M, Rusinowski S, Krzyżak J (2018b) Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization—case studies on autumn harvest. Environ Sci Pollut Res 25(12):12096–12106CrossRefGoogle Scholar
  93. Pokój T, Bułkowska K, Gusiatin ZM, Klimiuk E, Jankowski KJ (2015) Semi-continuous anaerobic digestion of different silage crops: VFAs formation, methane yield from fiber and non-fiber components and digestate composition. Bioresour Technol 190:201–210PubMedCrossRefGoogle Scholar
  94. Polechońska L, Klink A (2014) Trace metal bioindication and phytoremediation potentialities of Phalaris arundinacea L. (reed canary grass). J Geochem Explor 146:27–33CrossRefGoogle Scholar
  95. Prasifka JR, Lee DK, Bradshaw JD, Parrish AS, Gray ME (2012) Seed reduction in prairie cordgrass, Spartina pectinata Link., by the floret-feeding caterpillar Aethes spartinana (Barnes and McDunnough). Bioenergy Res 5(1):189–196CrossRefGoogle Scholar
  96. Rancane S, Karklins A, Lazdina D, Berzins P, Bardule A, Butlers A, Lazdins A (2017) Biomass yield and chemical composition of Phalaris arundinacea L. using different rates of fermentation residue as fertiliser. Agron Res 15(2):521–529Google Scholar
  97. Rattan RK, Datta SP, Chhonkar PK, Suribabu K, Singh AK (2005) Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study. Agric Ecosyst Environ 109(3–4):310–322CrossRefGoogle Scholar
  98. Roba C, Roşu C, Piştea I, Ozunu A, Baciu C (2016) Heavy metal content in vegetables and fruits cultivated in Baia Mare mining area (Romania) and health risk assessment. Eviron Sci Pollut R 23(7):6062–6073CrossRefGoogle Scholar
  99. Rofkar JR, Dwyer DF (2011) Effects of light regime, temperature, and plant age on uptake of arsenic by Spartina pectinata and Carex stricta. Int J Phytoremediation 13(6):528–537PubMedCrossRefGoogle Scholar
  100. Rusinowski S, Krzyżak J, Pogrzeba M (2018) Photosynthetic apparatus efficiency of Sida hermaphrodita cultivated on heavy metals contaminated arable land under various fertilization regimes. Civil Environ Eng Rep 28(1):130–145CrossRefGoogle Scholar
  101. Rusinowski S, Krzyżak J, Sitko K, Kalaji HM, Jensen E, Pogrzeba M (2019) Cultivation of C4 perennial energy grasses on heavy metal contaminated arable land: Impact on soil, biomass an photosynthetic traits. Environ Pollut 250:300–311PubMedCrossRefPubMedCentralGoogle Scholar
  102. Saikia R, Chutia RS, Kataki R, Pant KK (2015) Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials. Bioresour Technol 188:265–272PubMedCrossRefGoogle Scholar
  103. Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A et al (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721PubMedCrossRefGoogle Scholar
  104. Sawatdeenarunat C, Surendra KC, Takara D, Oechsner H, Khanal SK (2015) Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol 178:178–186PubMedCrossRefGoogle Scholar
  105. Schrama M, Vandecasteele B, Carvalho S, Muylle H, Putten WH (2016) Effects of first-and second-generation bioenergy crops on soil processes and legacy effects on a subsequent crop. GCB Bioenergy 8(1):136–147CrossRefGoogle Scholar
  106. Šiaudinis G, Jasinskas A, Šarauskis E, Steponavičius D, Karčauskienė D, Liaudanskienė I (2015) The assessment of Virginia mallow (Sida hermaphrodita Rusby) and cup plant (Silphium perfoliatum L.) productivity, physico–mechanical properties and energy expenses. Energy 93:606–612CrossRefGoogle Scholar
  107. Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580PubMedCrossRefGoogle Scholar
  108. Smeets EM, Lewandowski IM, Faaij AP (2009) The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting. Renew Sust Energ Rev 13(6–7):1230–1245CrossRefGoogle Scholar
  109. Smith R (2008) Agronomy of the energy crops Miscanthus x giganteus, Arundo donax and Phalaris arundinacea in Wales. Cardiff University, Cardiff, UKGoogle Scholar
  110. Sokhansanj S, Mani S, Turhollow A, Kumar A, Bransby D, Lynd L, Laser M (2009) Large-scale production, harvest and logistics of switchgrass (Panicum virgatum L.)—current technology and envisioning a mature technology. Biofuels Bioprod Biorefin 3(2):124–141CrossRefGoogle Scholar
  111. Tho BT, Lambertini C, Eller F, Brix H, Sorrell BK (2017) Ammonium and nitrate are both suitable inorganic nitrogen forms for the highly productive wetland grass Arundo donax, a candidate species for wetland paludiculture. Ecol Eng 105:379–386CrossRefGoogle Scholar
  112. Tóth G, Hermann T, Da Silva MR, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88:299–309PubMedCrossRefPubMedCentralGoogle Scholar
  113. Vamvuka D, Topouzi V, Sfakiotakis S (2010) Evaluation of production yield and thermal processing of switchgrass as a bio-energy crop for the Mediterranean region. Fuel Process Technol 91(9):988–996CrossRefGoogle Scholar
  114. Van Ginneken L, Meers E, Guisson R, Ruttens A, Elst K, Tack FM et al (2007) Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. J Environ Eng Landsc Manage 15(4):227–236CrossRefGoogle Scholar
  115. Van Liedekerke M, Prokop G, Rabl-Berger S, Kibblewhite M, Louwagie G (2014) Progress in the Management of Contaminated Sites in Europe, joint research center. Reference Report. European CommissionGoogle Scholar
  116. Vymazal J, Krőpfelová L (2005) Growth of Phragmites australis and Phalaris arundinacea in constructed wetlands for wastewater treatment in the Czech Republic. Ecol Eng 25(5):606–621CrossRefGoogle Scholar
  117. Wanat N, Austruy A, Joussein E, Soubrand M, Hitmi A, Gauthier-Moussard C et al (2013) Potentials of Miscanthus× giganteus grown on highly contaminated Technosols. J Geochem Explor 126:78–84CrossRefGoogle Scholar
  118. Werle S, Bisorca D, Katelbach-Woźniak A, Pogrzeba M, Krzyżak J, Ratman-Kłosińska I, Burnete D (2017) Phytoremediation as an effective method to remove heavy metals from contaminated area–TG/FT-IR analysis results of the gasification of heavy metal contaminated energy crops. J Energy Inst 90(3):408–417CrossRefGoogle Scholar
  119. Witters N, Van Slycken S, Ruttens A, Adriaensen K, Meers E, Meiresonne L et al (2009) Short-rotation coppice of willow for phytoremediation of a metal-contaminated agricultural area: a sustainability assessment. Bioenergy Res 2(3):144–152CrossRefGoogle Scholar
  120. Xie J, Weng Q, Ye G, Luo S, Zhu R, Zhang A et al (2014) Bioethanol production from sugarcane grown in heavy metal-contaminated soils. Bioresources 9(2):2509–2520CrossRefGoogle Scholar
  121. Zhang C, Guo J, Lee DK, Anderson E, Huang H (2015) Growth responses and accumulation of cadmium in switchgrass (Panicumvirgatum L.) and prairie cordgrass (Spartinapectinata Link). RSC Adv 5(102):83700–83706CrossRefGoogle Scholar
  122. Zieliński M, Dębowski M, Rusanowska P (2017) Influence of microwave heating on biogas production from Sida hermaphrodita silage. Bioresour Technol 245:1290–1293PubMedCrossRefGoogle Scholar
  123. Zub HW, Brancourt-Hulmel M (2010) Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agron Sustain Dev 30(2):201–214CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Ecology of Industrial AreasKatowicePoland
  2. 2.Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK

Personalised recommendations