Potential Role of Extremophilic Hydrocarbonoclastic Fungi for Extra-Heavy Crude Oil Bioconversion and the Sustainable Development of the Petroleum Industry

  • Leopoldo Naranjo-BriceñoEmail author
  • Beatriz Pernía
  • Trigal Perdomo
  • Meralys González
  • Ysvic Inojosa
  • Ángela De Sisto
  • Héctor Urbina
  • Vladimir León


This book chapter contributes to identifying some core areas inside the oil industry as potential targets for biotechnology, motivated by the increasing global demand of fuels in addition to the reduction of conventional crude oil reserves that have produced a greater interest on the exploitation of unconventional crude reserves. In parallel with enlarged global environmental concerns, it is mandatory the developing and improving clean-alternative fuel technologies with enhanced bioremediation strategies for unconventional crude. These efforts include the application of petroleum biotechnology with promissory microorganisms, especially extremophilic hydrocarbonoclastic fungi, a broad group of cultivable fungi which live optimally under extreme conditions and are characterized by having a high ability to grow using hydrocarbons as sole carbon source and energy. Few publications are focused on petroleum biotechnology and applications of fungal degradation or bioconversion of extra-heavy crude oil (EHCO), a type of crude that contains elevated amounts of asphaltenes, high-molecular-weight compounds with low bioavailability, and limited susceptibility to being biotransformed. We have included an enriching discussion on the biotechnological strategies applied to the study of cultivable fungal biodiversity inhabiting extreme environments to obtain powerful biocatalysts, following a simple and fast screening to determine both their hydrocarbonoclastic abilities and tolerance of growing in the presence of high concentrations of EHCO and hydrocarbons polycyclic aromatics compounds (HPAs). The potential applications of these promissory extremophilic hydrocarbonoclastic fungal strains in mycoremediation and EHCO-bioupgrading processes to promote the sustainable development of the petroleum industry will be discussed.


Asphaltenes Biotransformation Bioremediation Petroleum biotechnology Polycyclic aromatic hydrocarbons 



This work was supported by the Projects FONACIT No. 2005000440, Sub-Project 3: MISIÓN CIENCIA No. 2007001401 and FONACIT No. G- 2011000330. The authors recognize Dr. V. León for being a pioneer of the Petroleum Biotechnology in Venezuela, and dedicate this work to the memory of Dr. J. Demey, rest in peace. The authors thank Judith Nyisztor and Aitana Naranjo for grammatical support.


  1. AlGounaim MY, Diab A, AlAbdulla R, AlZamin N (1995) Effect of petroleum oil pollution on the microbiological populations of the desert soil of Kuwait. Arab Gulf J Sci Res 13(3):653–672Google Scholar
  2. Amund O, Adebowale AA, Ugoji EO (1987) Occurrence and characteristics of hydrocarbon-utilizing bacteria in Nigerian soils contaminated with spent motor oil. Indian J Microbiol 27:63–67Google Scholar
  3. April TM, Abbott SP, Foght JM, Currah RS (1998) Degradation of hydrocarbons in crude oil by the ascomycete Pseudallescheria boydii (Microascaceae). Can J Microbiol 44:270–278CrossRefGoogle Scholar
  4. Arellano T, Infante C, Naranjo L (2008) Manejo integral de fosas de hidrocarburos generadas por la actividad petrolera venezolana. Thesis for Magister in Environmental Management, UNEFA 1–250Google Scholar
  5. Arulazhagan P, Mnif S, Rajesh Banu J, Huda Q, Jalal MAB (2017) HC-0B-01: biodegradation of hydrocarbons by extremophiles. In: Heimann K, Karthikeyan O, Muthu S (eds) Biodegradation and bioconversion of hydrocarbons. Environmental footprints and eco-design of products and processes. Springer, Singapore, pp 137–162CrossRefGoogle Scholar
  6. Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum by two bacteria isolated from coastal waters. Biotechnol Bioeng 14:297–308CrossRefGoogle Scholar
  7. Ayala M, Hernández-López EL, Perezgasga L, Vázquez-Duhalt R (2012) Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil. Fuel 92:245–249CrossRefGoogle Scholar
  8. Bartha R, Atlas RM (1977) The microbiology of aquatic oil spills. Adv Appl Microbiol 22:225–226CrossRefGoogle Scholar
  9. Benka-Coker MO, Ekundayo JA (1997) Applicability of evaluating the ability of microbes isolated from an oil spill site to degrade oil. Environ Monit Assess 45:259–272CrossRefGoogle Scholar
  10. Bento FM, Gaylarde CC (2001) Biodeterioration of stored diesel oil: studies in Brazil. Int Biodeter Biodegr 47:107–112CrossRefGoogle Scholar
  11. Calomiris JJ, Austin B, Walker JD, Colwell RR (1986) Enrichment for estuarine petroleum-degrading bacteria using liquid and solid media. J Appl Bacteriol 42:135–144CrossRefGoogle Scholar
  12. CDC-NIOSH (2015) Pocket guide to chemical hazards-petroleum distillates (naphtha).
  13. Chaillan F, Flèche AL, Bury E, Phantavong Y, Grimont P, Saliot A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155:587–595CrossRefGoogle Scholar
  14. Chaineau CH, Morel J, Dupont J, Bury E, Oudot J (1999) Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil. Sci Total Environ 227:237–247CrossRefGoogle Scholar
  15. Colombo JC, Cabello M, Arambarri AM (1996) Biodegradation of Aliphatic and aromatics hydrocarbons by natural soil microflora and pure cultures of imperfect and lignolytic fungi. Environ Pollut 94:355–362CrossRefGoogle Scholar
  16. Coyne M (2000) Microbiología del Suelo: un enfoque exploratorio, 1ª Edición edn. Editorial Paraninfo SA, Madrid, Spain, pp 1–440Google Scholar
  17. Dávila A, Vázquez-Duhalt R (2006) Enzimas ligninolíticas fúngicas para fines ambientales. Mensaje Bioquímico 30:29–55Google Scholar
  18. Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi, vol 1, pp 1–860Google Scholar
  19. Fedorak PM, Semple KM, Vazquez-Duhalt R, Westlake DWS (1993) Chloroperoxidase mediated modifications of petroporphyrins and asphaltenes. Enzyme Microb Technol 15:429–437CrossRefGoogle Scholar
  20. Foght JM (2004) Whole-cell bio-processing of aromatic compounds in crude oil and fuels. In: Petroleum biotechnology: developments and perspectives. Elsevier Science, Amsterdam, pp 145–175CrossRefGoogle Scholar
  21. Gallego JLR, García-Martınez MJ, Llamas JF, Belloch C, Pelaez AI, Sanchez J (2007) Biodegradation of oil tank bottom sludge using microbiol Consortia. Biodegradation 18:269–281CrossRefGoogle Scholar
  22. García-Arellano H, Buenrostro-Gonzalez E, Vazquez-Duhalt R (2004) Biocatalytic transformation of petroporphyrins by chemical modified cytochrome c. Biotechnol Bioeng 85:790–798CrossRefGoogle Scholar
  23. Gesinde AF, Agbo EB, Agho MO, Dike EFC (2008) Bioremediation of some Nigerian and Arabian crude oils by fungal isolates. Int J Pure Appl Sci 2:37–44Google Scholar
  24. Gianfreda L, Rao MA (2004) Potential of extra-cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol 35:339–354CrossRefGoogle Scholar
  25. Gross S, Robbins EI (2000) Acidophilic and acid-tolerant fungi and yeasts. Hydrobiologia 433:91–109CrossRefGoogle Scholar
  26. Hemida SK, Bagy MMK, Khallil AM (1993) Utilization of hydrocarbons by fungi. Cryptogamie Mycologie 14:207–213Google Scholar
  27. Hernández-López EL, Perezgasga L, Huerta-Saquero A, Vazquez-Duhalt R (2016) Biotransformation of petroleum asphaltenes and high molecular weight polycyclic aromatic hydrocarbons by Neosartorya fischeri. Environ Sci Pollut Res Int 23:10773–10784CrossRefGoogle Scholar
  28. Lahav R, Nejidat A, Abeliovich A (2002) The identification and characterization of osmotolerant yeast isolates from chemical wastewater evaporation ponds. Microb Ecol 43:388–396CrossRefGoogle Scholar
  29. León V, Córdova J, Muñoz S, De Sisto A, Naranjo L (2007) Process for the upgrading of heavy crude oil, extra-heavy crude oil or bitumens through the addition of a biocatalyst. United States Patent Application 20070231870Google Scholar
  30. León Y, De Sisto A, Inojosa Y, Malaver N, Naranjo-Briceño L (2009) Identificación de biocatalizadores potenciales para la remediación de desechos petrolizados de la Faja Petrolif́ era del Orinoco. RET 1:12–25Google Scholar
  31. Macelroy RD (1974) Some comments on the evolution of extremophiles. BioSystem 6:74–75CrossRefGoogle Scholar
  32. Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA (2015) Brock biology of microorganisms, 14th edn. Pearson, BostonGoogle Scholar
  33. Martínez MJ, Ruiz-Dueñas FJ, Guillén F, Martínez AT (1996) Purification and catalytic properties of two manganese-peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 237:424–432CrossRefGoogle Scholar
  34. Martínez AT, Speranza M, Ruiz-Duenas FJ, Ferreira P, Camarero S, Guillen F, Martınez MJ, Gutierrez A, del Río JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204PubMedGoogle Scholar
  35. Moore D, Robson GD, Trinci AP (2011) 21st century guidebook to fungi with CD. Cambridge University Press, New York, pp 1–640CrossRefGoogle Scholar
  36. Nadon L, Siemiatycki J, Dewar R, Krewski D, Gérin M (1995) Cancer risk due to occupational exposure to polycyclic aromatic hydrocarbons. Am J Ind Med 28(3):303–324CrossRefGoogle Scholar
  37. Naranjo L, Urbina H, De Sisto A, Leon V (2007) Isolation of autochthonous non-white rot fungi with potential for enzymatic upgrading of Venezuelan extra-heavy crude oil. Biocatal Biotransformation 25:341–349CrossRefGoogle Scholar
  38. Naranjo L, Urbina H, González M, Córdova J, Muñoz S, León V. (2008) Potential of autochthonous non-white rot fungi for partial enzymatic conversion (PEC-IDEA Technology) of Venezuelan extra-heavy crude oil. In: Proceeding of the 6th international symposium on fuels and lubricants (ISFL). New Delhi, India. Paper No. 128Google Scholar
  39. Naranjo-Briceño L, Perniá B, Guerra M, Demey JR, González M, De Sisto A, Inojosa Y, Fusella E, Freites M, Yegres JF (2013) Potential role of oxidative exoenzymes of the extremophilic fungus Pestalotiopsis palmarum BM-04 in biotransformation of extra-heavy crude oil. Microb Biotechnol 6(6):720–730PubMedPubMedCentralGoogle Scholar
  40. Naranjo L, Pernía B, Inojosa Y, Rojas D, Sena D’Anna L, González M, De Sisto A (2015) First evidence of fungal strains isolated and identified from naphtha storage tanks and transporting pipelines in Venezuelan oil facilities. Adv Microbiol 5:143–154CrossRefGoogle Scholar
  41. Obire O (1993) The suitability of various Nigerian petroleum fractions as substrate for bacterial growth. Discov Innov 5:45–49Google Scholar
  42. Odokuma LO, Okpokwasili GC (1993) Seasonal ecology of hydrocarbon-utilizing microbes in the surface waters of a river. Environ Monit Assess 27(3):175–191CrossRefGoogle Scholar
  43. Oudot JP, Dupont J, Haloui S, Roquebert MF (1993) Biodegradation potential of hydrocarbon-degrading fungi in tropical soil. Soil Biol Biochem 25:1167–1173CrossRefGoogle Scholar
  44. OPEC (2017) OPEC annual statistical bulletin 2017.
  45. Pernía B, Demey JR, Inojosa Y, Naranjo L (2012) Biodiversidad y potencial hidrocarbonoclástico de hongos aislados de crudo y sus derivados: un meta-análisis. Latinoam Biotecnol Amb Algal 3:1–40Google Scholar
  46. Pernía B, Rojas-Tortolero D, Sena L, De Sisto A, Inojosa Y, Naranjo L (2018) Fitotoxicidad de HAP, crudos extra pesados y sus fracciones en Lactuca sativa: una interpretación integral utilizando un índice de toxicidad modificado. Rev Int Contam Ambient 34:79–91CrossRefGoogle Scholar
  47. Pourfakhraei E, Badraghi J, Mamashli F, Nazari M, Saboury AA (2018) Biodegradation of asphaltene and petroleum compounds by a highly potent Daedaleopsis sp. J Basic Microbiol:1–14Google Scholar
  48. Prenafeta-Boldú FX, de Hoog GS, Summerbell RC (2018) Fungal communities in hydrocarbon degradation. In: McGenity T (ed) Microbial communities utilizing hydrocarbons and lipids: members, metagenomics and ecophysiology. Handbook of hydrocarbon and lipid microbiology. Springer, Cham, pp 1–36Google Scholar
  49. Rampelotto PH (2013) Extremophiles and extreme environments. Life 3:482–485CrossRefGoogle Scholar
  50. Ruiz-Dueñas FJ, Martínez MJ, Martínez AT (1999) Molecular characterization of a novel peroxidase isolated from the lignolytic fungus Pleurotus eryngii. Mol Microbiol 31:223–235CrossRefGoogle Scholar
  51. Saparrat MCN, Guillén F, Arambarri AM, Martínez AT, Martínez MJ (2002) Induction, isolation, and characterization of two laccases from the with rot basidiomycete Coriolopsis rigida. Appl Environ Microbiol 68:1534–1540CrossRefGoogle Scholar
  52. Strausz OP, Mojelsky TW, Lown EM (1992) The molecular structure of asphaltenes: an unfolding story. Fuel 71:1355–1363CrossRefGoogle Scholar
  53. Terrer C, Vicca S, Hungate BA, Phillips RP, Colin Prentice I (2016) Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353:72–74CrossRefGoogle Scholar
  54. Turk M, Plemenitaš A, Gunde-Cimerman N (2011) Extremophilic yeasts: plasma-membrane fluidity as determinant of stress tolerance. Fungal Biol 115:950–958CrossRefGoogle Scholar
  55. Urbina H, Reyes A, Fusella E, González M, León V, Naranjo L (2007) Pycnoporus sanguineus IDEA, a laccase-overproducing fungi with high potential in partial enzymatic conversion (PEC-Technology) of Venezuelan extra-heavy crude oil. J Biotechnol 131(2 Supplement 1):S94–S95CrossRefGoogle Scholar
  56. Urbina H, Aime MC (2018) A closer look at Sporidiobolales: ubiquitous microbial community members of plant and food biospheres. Mycologia 110:79–92Google Scholar
  57. Uribe-Álvarez C, Ayala M, Perezgasga L, Naranjo L, Urbina H, Vazquez-Duhalt R (2011) First evidence of mineralization of petroleum asphaltenes by a strain of Neosartorya fischeri. J Microbial Biotechnol 4:663–672CrossRefGoogle Scholar
  58. Uzoamaka GO, Floretta T, Florence MO (2009) Hydrocarbon degradation potentials of indigenous fungal isolates from petroleum contaminated soils. J Phys Nat Sci 3:1–6Google Scholar
  59. Waldo GS, Carlson RM, Moldowan JM, Peters KE, Penner-Hahn JE (1991) Sulfur speciation in heavy petroleums: information from X-ray absorption near-edge structure. Geochim Cosmochim Acta 55:801–814CrossRefGoogle Scholar
  60. Zhang X, Li SJ, Li JJ, Liang ZZ, Zhao CQ (2018) Novel natural products from extremophilic fungi. Mar Drugs 16(6):4Google Scholar
  61. Zheng C, Zhou J, Wang J, Qu B, Wang J, Lu H, Zhao H (2009) Aerobic degradation of nitrobenzene by immobilization of Rhodotorula mucilaginosa in polyurethane foam. J Hazard Mater 168:298–303CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Área de Energía y Ambiente, Fundación Instituto de Estudios Avanzados (IDEA)Carretera Nacional Baruta-Hoyo de la Puerta, Valle de Sartenejas, CPCaracasVenezuela
  2. 2.Grupo de Microbiología AplicadaUniversidad Regional Amazónica Ikiam, CPTenaEcuador
  3. 3.Facultad de Ciencias NaturalesUniversidad de Guayaquil, CPGuayaquilEcuador
  4. 4.Division of Plant IndustryFlorida Department of AgricultureGainesvilleUSA

Personalised recommendations