Pharmaceutical Applications of Thermophilic Fungi

  • Gurram Shyam Prasad


Thermophilic fungi are the only group in eukaryotic microorganisms having the distinctive ability to grow at elevated temperatures and are of special interest due to their potential to synthesize a remarkable range of heat-stable secretary enzymes, viz. proteases, lipases, amylases, cellulases, xylanases, and cell-associated enzymes, viz. trehalase, invertase, and glycosidase. The majority of these enzymes have high-temperature stability and tolerance to a wide range of pH. Although thermophilic fungi form a diverse group of organisms and their incidence was reported from different substrates like mushroom compost, municipal waste, dung material, and coal mine soil, they remained unexplored compared to thermophilic eubacteria and archaebacteria. Though they are well known for wide biotechnological applications, their application in pharmaceutical industry is unexplored.

Hence, in this chapter, the potential pharmaceutical applications of thermophilic fungi are discussed.


Extremophiles Biotransformation Drug-drug interactions Mammalian drug metabolism 



The author is thankful to Dr. G. Snithik, Dr. Akshaya Priya, and G. Preethi for extending their support in writing this review.


  1. Abourashed EA, Clark AM, Hufford CD (1999) Microbial models of mammalian metabolism of xenobiotics, an updated review. Curr Med Chem 6:359–374PubMedPubMedCentralGoogle Scholar
  2. Ahmadian M, Suh JM, Hah N et al (2013) PPAR γ signaling and metabolism: the good, the bad and the future. Nat Med 19:557–566CrossRefGoogle Scholar
  3. Albidy AZA, York P, Wong V, Losowsky MS, Chrystyn H (1997) Improved bioavailability and clinical response in patients with chronic liver disease following the administration of a spironolactone: beta-cyclodextrin complex. Br J Clin Pharmacol 44:35–39CrossRefGoogle Scholar
  4. Allen PJ, Emerson R (1949) Guayule rubber, microbiological improvement by shrub retting. Ind Eng Chem 41:346–365Google Scholar
  5. Anastasi A, Varese GC, Marchisio VF (2005) Isolation and identification of fungal communities in compost and vermicompost. Mycolagia 94:33–44CrossRefGoogle Scholar
  6. Benchaoui HA, Scott EW, Mc Kellar QA (1993) Pharmacokinetics of albendazole, albendazole sulfoxide and netobimin in goats. J Vet Pharmcol Ther 2:237–240CrossRefGoogle Scholar
  7. Blochl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1:14–21Google Scholar
  8. Boris S, Bernahard S (2003) Angiotensin II AT1 receptor antagonists. Clinical implications of active metabolites. J Med Chem 46:2261–2270CrossRefGoogle Scholar
  9. Brock TD (1995) The road to Yellowstone and beyond. Annu Rev Microbiol 49:1–28CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bruce LZ, Henrik KN, Robert LS (1991) Thermostable enzymes for industrial applications. J Ind Microbiol Biotechnol 8:71–81Google Scholar
  11. Brunton L, Keith P, Blumenthal D, Buxton I (2008) Goodman and Gilman’s manual of pharmacology and therapeutics. McGraw-Hill, New YorkGoogle Scholar
  12. Burg BV (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cascorbi I (2012) Drug interactions-principles, examples and clinical consequences. Dtsch Arztebl Int 109:33–34Google Scholar
  14. Cha CJ, Doerge DR, Cerniglia CE (2001) Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl Environ Microbiol 67:4358–4360CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chang Y (1967) The fungi of wheat straw compost. II. Biochemical and physiological studies. Trans Br Mycol Soc 50:667–677CrossRefGoogle Scholar
  16. Chiung M, Fujita T, Nakagawa M, Nozaki H, Chen GY, Chen ZC, Nakayama M (1993) A novel Quinone antibiotic from Malbranchea cinnamomea TAIM 13T54. J Antibiot 46:1819–1826CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cooney DG, Emerson R (1964) Thermophilic fungi. An account of their biology, activities and classification. W.H. Freeman and Company, San Francisco, CA/LondonGoogle Scholar
  18. Cordova J, Roussos S, Raratti J, Nungaray J, Loera O (2003) Identification of Mexican thermophilic and thermotolerant fungal isolates. Micol Appl Int 15:337–344Google Scholar
  19. Crisan EV (1973) Current concepts of thermophilism and thermophilic fungi. Mycologia 65:1973–1978CrossRefGoogle Scholar
  20. Csiko GY, Banhidi GY, Semjen G et al (1996) Metabolism and Pharmacokinetics of albendazole after oral administration to chickens. J Vet Pharmacol Ther 19:322–325CrossRefPubMedPubMedCentralGoogle Scholar
  21. Doucet JJA, Noel D, Geffroy CE, Capet C, Coquard A, Couffin E, Fauchais AL, Chassagne P, Schleifer M (2002) Preventable and non-preventable risk factors for adverse drug events related to hospital admissions in the elderly: a prospective study. Clin Drug Investig 22:385–392CrossRefGoogle Scholar
  22. Eggins HOW, Coursey DG (1964) Thermophilic fungi associated with Nigerian oil palm produce. Nature 203:1081–1084CrossRefGoogle Scholar
  23. Eggins HOW, Malik KA (1969) The occurrence of thermophilic and cellulolytic fungi in pasture land soil. Antonie Van Leewenhoek 35:178–184CrossRefGoogle Scholar
  24. El Amri HS, Fargetton X, Delatour P, Batt MA (1987) Sulphoxidation of albendazole by the FAD-containing & cytochrome P-450 dependent mono-oxygenases from pig liver microsomes. Xenobiotica 10:1159–1168CrossRefGoogle Scholar
  25. Evans HC (1971) Thermophilic fungi of coal spoil tips II. Occurrence and temperature relations. Trans Br Mycol Soc 57:255–266Google Scholar
  26. Fan Z, Huang XL, Kalinski P, Young S, Rinaldo CR (2007) Dendritic cell function during chronic hepatitis C virus and human immunodeficiency virus type 1 infection. Clin Vaccine Immunol 14:1127–1137CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fulleringer SL, Seguin D, Bexille A, Desterque C, Arne P, Cherette R, Bretagne S, Guillot J (2005) Evolution of the environmental contamination by thermophilic fungi in a Turkey confinement house in France. Poult Sci 85:1875–1880CrossRefGoogle Scholar
  28. Gardiner P, Schrode K, Quinlan D, Martin BK, Boreham DR, Rogers MS, Smith SM, Karim A (1989) Spironolactone metabolism: steady state serum levels of the sulfur containing metabolites. J Clin Pharmacol 29:342–347CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ghosh S, Sachan A, Mitra A (2005) Degradation of ferulic acid by a basidiomycetes Schizophyllum commune. World J Microbiol Biotechnol 21:385–388CrossRefGoogle Scholar
  30. Ghosh S, Sachan A, Mitra A (2006) Formation of vanillic acid from ferulic acid by Paecilomyces variotii MTCC 6581. Curr Sci 90:825–829Google Scholar
  31. Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235Google Scholar
  32. Guasch L, Sala E, Valls C, Mulero M, Pujadas G, Vallve SG (2012) Development of docking-based D-QSAR models for PPAR gamma Full agonists. J Mol Graph Model 36:1–9CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gunaratna C (2000) Drug metabolism and pharmacokinetics in drug discovery: a primer for bioanalytical chemists part-1. Curr Sep 19:1Google Scholar
  34. Gyurik RJ, Chow AW, Zaber B, Brunner EL, Miller JA, Villani AJ et al (1981) Metabolism of albendazole in cattle, sheep, rats and mice. Drug Metab Dispos 9:503–508PubMedPubMedCentralGoogle Scholar
  35. Hezari M, Devis PJ (1993) Microbial models of mammalian metabolism. Furosemide glucoside formation using the fungus Cunninghamella elegans. Drug Metab Dispos 21:259–267PubMedPubMedCentralGoogle Scholar
  36. Hunter AC, Mills PW, Dedi C, Dodd HT (2007) Predominant allylic hydroxylation at carbons 6 and 7 of 4 and 5-ene functionalized steroids by the thermophilic fungus Rhizomucor tauricus IMI23312. J Steroid Biochem Mol Biol 108:155–163CrossRefPubMedPubMedCentralGoogle Scholar
  37. Huskey SE, Miller RR, Chiu SH (1993) N-Glucuronidation reactions. I. Tetrazole N- glucuronidation of selected angiotensin II receptor antagonists in hepatic microsomes from rats, dogs, monkeys, and humans. Drug Metab Dispos 21:792–799PubMedPubMedCentralGoogle Scholar
  38. Hutzler JM, Cook J, Fleishaker JC (2011) Drug-drug interactions: designing development programmes and appropriate product labeling. In: Bonate PL, Howard DR (eds) Pharmacokinetics in Drug Development. American Association of Pharmaceutical ScientistsGoogle Scholar
  39. Ito K, Iwashita K, Iwano K (1992) Cloning and sequencing of the xyn C gene encoding acid xylanase of Aspergillus kawachii. Biosci Biotechnol Biochem 56:1338–1340CrossRefPubMedPubMedCentralGoogle Scholar
  40. Johri BN, Rajani (1999) Mushroom compost: microbiology and application. In: Bagyaraj BJ, Varma A, Khanna K, Kheri HK (eds) Modern approaches and innovations in soil management. Rastogi Publications Meerut, Uttar Pradesh, pp 345–358Google Scholar
  41. Johri BN, Satyanarayana (1986) Thermophilic moulds; Perspectives in basic and applied research. Indian Rev Lifes Sci 6:75–100Google Scholar
  42. Karim K, Zagarella BA, Hribar J, Dooley M (1976) Spironolactone. I Disposition and metabolism. Clin Pharmacol Ther 19:158–169CrossRefPubMedPubMedCentralGoogle Scholar
  43. Khushaldas MB (2009) Eco-Physiological studies on thermophilic fungi from diverse habitats in Vidarbha region, PhD thesis, R.T.M. Nagpur University, NagpurGoogle Scholar
  44. Kluepfel D, Bagli J, Baker H, Charest MP, Kudelski A, Sehgal SN, Vezina C (1971) Myricin, A new antifungal antibiotic from Myriococcum albomyces. J Antibiot 25:109–115CrossRefGoogle Scholar
  45. Kohilu U, Nigam P, Singh D, Chaudhary K (2001) Thermostable, alkaliphilic and cellulose free xylanase production by Thermoactinomyces thalophilus subgroup C. Enzyme Microb Technol 28:606–610CrossRefGoogle Scholar
  46. Krieter PA, Colletti AE, Miller RR, Stearns RA (1995) Absorption and glucuronidation of the angiotensin II receptor antagonist losartan by the rat intestine. J Pharmacol Exp Ther 273:816–822PubMedPubMedCentralGoogle Scholar
  47. Kuthubutheen AJ (1983) Growth and sporulation of thermophilous fungi on agar containing various carbon and nitrogen compounds. Mycopathologia 82:45–48CrossRefGoogle Scholar
  48. Lacagnin LB, Lutsie P, Colby HD (1987) Conversion of spironolactone to 7α-thiomethylspironolactone by hepatic and renal microsomes. Biochem Pharmacol 36:3439–3444CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lacey E (1990) Mode of action of benzimidazoles. Parasitol Today 6:112–115CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lanusse CE, Gascon LH, Prichard PK (1993) Gastrointestinal distribution of albendazole metabolites following netobimin administration to cattle; relationship with plasma disposition kinetics. J Vet Pharmacol Ther 1:38–47CrossRefGoogle Scholar
  51. Lasa I, Berenguer J (1994) Thermophilic enzymes and their biotechnological potential. Microbiologia 9:77–89Google Scholar
  52. Lee CR et al (2003) Tolbutamide, Flurbiprofen and Losartan as probes of CYP 2C9 activity in humans. J Clin Pharmacol 43:84–91CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lin L, Zhang J, Wei Y, Chen C, Peng Q (2005) Phylogenetic analysis of several Thermus strains from Rehai of Tengchong. Yunnan, China. Can J Microbiol 51:881–886CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lindt W (1886) Mitteilungen uber einige neue pathogene Schimmelpilze. Arch Exp Pathol Pharmakol 21:269–298CrossRefGoogle Scholar
  55. Los LE, Coddington AB, Ramjit HG, Colby HD (1993) Identification of spironolactone metabolites in plasma and target organs of guinea pigs. Drug Metab Dispos 21:1086–1090PubMedPubMedCentralGoogle Scholar
  56. Mahajan MK, Johri BN, Guptha RK (1986) Influence of desiccation stress in xerophylic thermophile Humicola species. Curr Sci 56:928–930Google Scholar
  57. Maheshwari R (1997) The ecology of thermophilic fungi. In: Janardhana KK, Rajendran C, Natarajan K, Hawksworth DL (eds) Tropical mycology. Oxford and IBH Publishers, Delhi, pp 277–289Google Scholar
  58. Manahan BP, Ferguson CL, Killeavy ES, Lioyd BK, Troy J, Cantilena LR (1990) Torsades de pointes occurring in association with terfenadine use. JAMA 264:2788–2790CrossRefGoogle Scholar
  59. Marriner SE, Bogan JA (1980) Pharmacokinetics of albendazole in sheep. Am J Vet Res 7:1126–1129Google Scholar
  60. Marsheck WJ, Karim A (1973) Preparation of metabolites of spironolactone by microbial oxygenation. Appl Environ Microbiol 25:647–649Google Scholar
  61. McKellar QA, Jackson F, Coop RL, Baggot JD (1993) Plasma profiles of albendazole metabolites after administration of netobimin and albendazole in sheep; effects of parasitism & age. Br Vet J 1:101–113CrossRefGoogle Scholar
  62. Meessen LL, Delattre M, Haon M, Thibault JF, Ceccaldi BC, Brunerie P, Asther M (1996) A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J Biotechnol 50:107–113CrossRefGoogle Scholar
  63. Meessen LL, Delattre M, Haon M, Asther M (1999) Methods for bioconversion of ferulic acid to vanillic acid or vanillin and for the bioconversion of vanillic acid to vanillin using filamentous fungi, US Patent no 5866380Google Scholar
  64. Mehrotra BS (1985) Thermophilic fungi-Biological enigma and tools for the biotechnologist and biologist. Indian Phytopathol 38:211–229Google Scholar
  65. Mei J, Wang L, Wang S, Zhan J (2014) Synthesis of two new hydroxylated derivatives of spironolactone by microbial transformation. Bioorg Med Chem Lett 24:3023–3025CrossRefPubMedPubMedCentralGoogle Scholar
  66. Miller FC, Harper ER, Macauly BJ, Gulliever A (1990) Composting based on moderately thermophilic and aerobic conditions for the production of commercial mushroom growing compost. Aust J Exp Agric 30:287–296CrossRefGoogle Scholar
  67. Moloney AP, Callan SM, Murray PG, Tuohy MG (2004) Mitochondrial malate dehydrogenase from the thermophilic, filamentous fungus Talaromyces emersonii; Purification of the native enzyme, cloning and over expression of the corresponding gene. Eur J Biochem 271:3115–3126CrossRefGoogle Scholar
  68. Moody JD, Freeman JP, Cerniglia CE (1999) Biotransformation of doxepin by Cunninghamella elegans. Drug Metab Dispos 27:1157–1164PubMedPubMedCentralGoogle Scholar
  69. Moody JD, Heinze TM, Hansen EB, Cerniglia CE (2000) Metabolism of the ethanol amine type antihistamine diphenhydramine (Benadryl) by the fungus Cunninghamella elegans. Appl Microbiol Biotechnol 53:310–315CrossRefPubMedPubMedCentralGoogle Scholar
  70. Moroni P, Bouronfosse T, Sauvageon CL, Delatour P, Benoit E (1995) Chiral sulfoxidation of albendazole by the flavin adenine dinucleotide-containing & cytochrome P450-dependent monooxygenases from rat liver microsomes. Drug Metabol Dispos 2:160–165Google Scholar
  71. Motedayan N, Ismail MB, Nazarpour F (2013) Bioconversion of ferulic acid to vanillin by combined action of Aspergillus niger K8 and Phanerochaete chrysosporium ATCC24725. Afr J Biotechnol 12:6618–6624CrossRefGoogle Scholar
  72. Mouchacca J (1995) Thermophilic fungi in desert soils: a neglected extreme environment. In: Allsopp D, ColWell RR, Hawksworth DL (eds) Microbial diversity and eco-system function. C.A.B. International, Wallingford, pp 265–288Google Scholar
  73. Mouchacca J (1997) Thermophilic fungi: biodiversity and taxonomic status. Crypt Mycol 18:19–69Google Scholar
  74. Mouchacca J (1999) Thermophilic fungi; present taxonomic concepts. In: Johri BN, Satyanarayana T, Olsen J (eds) Thermophilic moulds in biotechnology. Springer, Dordrecht, pp 43–83CrossRefGoogle Scholar
  75. Murphy GJ, Holder JC (2000) PPAR-γ agonists: therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol Sci 21:469–474CrossRefPubMedPubMedCentralGoogle Scholar
  76. Nguyen S, Ala F, Cardwell C, Cai D, McKindles KM, Lotvola A, Hodges S, Deng Y, Tiquia-Arashiro SM (2013) Isolation and screening of carboxydotrophs isolated from composts and their potential for butanol synthesis. Environ Technol 34:1995–2007CrossRefGoogle Scholar
  77. Niehaus F, Bertoldo C, Kahler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial applications. Appl Microbiol Biotechnol 51:711–729CrossRefGoogle Scholar
  78. Ofosu-Asiedu A, Smith RS (1973) Some factors affecting wood degradation by thermophilic and thermotolerant fungi. Mycologia 65:87–98CrossRefGoogle Scholar
  79. Ogundero VW (1981) Isolation of thermophilic and thermotolerant fungi from stored groundnuts in Nigeria and determination of their lipolytic activity. Int Biodeterior Bull 17:51–55Google Scholar
  80. Overdiek HW, Merkus FW (1987) The metabolism and biopharmaceutics of spironolactone in man. Rev Drug Metab Drug Interac 5:273–302CrossRefGoogle Scholar
  81. Pan WZ, Huang XW, Wei KB, Zhang CM, Yang DM, Ding JM, Zhang KQ (2010) Diversity of thermohic fungi in Tengchong Rehai National Park revealed by ITS nucleotide sequence analyses. J Microbiol 48:146–152PubMedPubMedCentralGoogle Scholar
  82. Penicaut B, Maugein P, Maisonneuve H (1983) Pharmacokinetics and urinary metabolism of albendazole in man. Bull Soc Pathol Exot Filiales 76:698–708PubMedPubMedCentralGoogle Scholar
  83. Pomaranski E, Tiquia-Arashiro SM (2016) Butanol tolerance of carboxydotrophic bacteria isolated from manure composts. Environ Technol 37(15):1970–1982CrossRefGoogle Scholar
  84. Prasad GS, Shravan GK (2018) Hepatitis C virus RNA-dependent RNA polymerase NS5B inhibition potentials of anti-helminthic drug albendazole and its biotransformed metabolites: an in silico study. IJPBS 8:341–348Google Scholar
  85. Prasad GS, Srisailam K (2018) Metabolites generation via oxidation, hydroxylation, acylation, dechlorination, dealkylation and glucuronidation of losartan by thermophilic fungus Rhizomucor pusillus NRRL 28626. IRJNAS 5:98–115Google Scholar
  86. Prasad GS, Girisham S, Reddy SM, Srisailam K (2008) Biotransformation of albendazole by fungi. World J Microbiol Biotechnol 24:1565–1571CrossRefGoogle Scholar
  87. Prasad GS, Girisham S, Reddy SM (2010) Microbial transformation of albendazole. Indian J Exp Biol 48:415–420Google Scholar
  88. Prasad G, Girisham S, Reddy SM (2011) Potential of thermophilic fungus Rhizomucor pusillus in biotransformation of antihelminthic drug albendazole. Appl Biochem Biotechnol 165:1120–1128CrossRefPubMedPubMedCentralGoogle Scholar
  89. Prasad GS, Srisailam K, Sashidhar RB (2016) Metabolic inhibition of meloxicam by specific CYP2C9 inhibitors in Cunninghamella blakesleeana NCIM 687: in silico and in vitro studies. Springer Plus 5:166CrossRefPubMedPubMedCentralGoogle Scholar
  90. Prasad GS, Shravan Kumar G, Srisailam K (2018) Novel metabolites of losartan as human peroxisome proliferator activated receptor gamma (PPAR γ) and human angiotensin receptor (AT1R) binders: an in silico study. IJPBS 8:330–337Google Scholar
  91. Rahouti M, Seigle-Murandi F, Steiman R, Eriksson KE (1989) Metabolism of ferulic acid by Paecilomyces variotii and Pestalotia palmarum. Appl Environ Microbiol 55:2391–2398PubMedPubMedCentralGoogle Scholar
  92. Ravindran S, Basu S, Surve P, Lonsane G, Sloka N (2012) Significance of biotransformation in drug discovery and development. J Biotechnol Biomater S13:005Google Scholar
  93. Romet JM, Crawford K, Cyr T, Inaba T (1994) Terfenadine metabolism in human liver: in vitro inhibition by macrolide antibiotics and azole antifungals. Drug Metab Dispos 22:849–857Google Scholar
  94. Ross RC, Harris PJ (1983) The significance of thermophilic fungi in mushroom compost preparation. Sci Hortic AMST 20:61–70CrossRefGoogle Scholar
  95. Rowland M, Tozer TN (1995) Clinical pharmacokinetics: concepts and applications, 3rd edition. Section 1:11–17Google Scholar
  96. Saito M, Matsuura I, Okazaki H (1979) Tf26Vx, an antibiotic produced by a thermophilic fungus. J Antibiot 32:1210–1212CrossRefPubMedPubMedCentralGoogle Scholar
  97. Salar RK, Aneja KR (2007) Thermophilic fungi: taxonomy and biogeography. J Agric Technol 3:77–107Google Scholar
  98. Sandhu DK, Singh S (1985) Air-borne thermophilous fungi at Amritsar. India Trans Br Mycol Soc 84:41–46CrossRefGoogle Scholar
  99. Satyanarayana T, Johri BN, Klein (1992) Biotechnological potential of thermophilic fungi. In: Arora DK, Elander RP, Mukharji KG (eds) Hand book of applied mycology, vol 4. Marcel Dekker Inc., New York, pp 729–761Google Scholar
  100. Sayanarayana T, Chavant L (1987) Bioconversion and Binding of sterols by thermophilic moulds. Folia Microbiol 32:354–359CrossRefGoogle Scholar
  101. Schulze B, Wubbolts MG (1999) Biocatalysis for industrial production of fine chemicals. Curr Opin Biochem 10:609–615CrossRefGoogle Scholar
  102. Sharma HSS, Johri BN (1992) The role of thermophilic fungi in agriculture. In: Handbook of applied mycology, vol 4. Marcel Dekker, New York, pp 707–728Google Scholar
  103. Sherry JH, Donnell JPO, Colby HD (1981) Conversion of spironolactone to an active metabolite in target tissues: formation of 7α-thiospironolactone by microsomal preparations from guinea pig liver, adrenals, kidneys and testes. Life Sci 29:2727–2736CrossRefPubMedPubMedCentralGoogle Scholar
  104. Siegl PKS (1993) Discovery of losartan: the first specific non-peptide angiotensin II receptor antagonist. J Hypertension 11:19–22CrossRefGoogle Scholar
  105. Sokuda H, Nishiyama T, Ogura K, Nagayama S, Ikeda K, Yamaguchi S, Nakamura Y, Kawaguchi Y, Watable T (1997) Lethal drug interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs. Drug Metab Dispos 25:270–273Google Scholar
  106. Sreelatha B, Prasad GS, RaoV K, Girisham S (2018) Microbial synthesis of mammalian metabolites of Spironolactone by thermophilic fungus Thermomyces lanuginosus. Steroids 136:1–7CrossRefGoogle Scholar
  107. Srisailam K, Rajkumar V, Veeresham C (2010) Predicting drug interaction of clopidogrel on microbial metabolism of clopidogrel. Appl Biochem Biotechnol 160:1508–1516CrossRefPubMedPubMedCentralGoogle Scholar
  108. Stearns RA, Chakravarty PK, Chen R, Chiu SH (1995) Biotransformation of losartan to its active carboxylic acid metabolite in human liver microsomes. Role of cytochrome p4502C and 3A subfamily members. Drug Metab Dispos 23:207–215PubMedPubMedCentralGoogle Scholar
  109. Stratsma G, Samson RA, Olijusma TW, Gerrits JPG, Opden Camp HJM, Gerrits JPG, Griensven LJLD (1994) Ecology of thermophilic fungi in mushroom compost with emphasis on Scytalidium thermophilum and growth stimulation of Agaricus bisporus. Appl Environ Microbial 60:454–455Google Scholar
  110. Sun L, Huang HH, Liu H, Zhang DF (2004) Transformation of verapamil by Cunninghamella blakesleeana. Appl Environ Microbiol 70:2722–2727CrossRefPubMedPubMedCentralGoogle Scholar
  111. Tansey MR, Brock TD (1978) Microbial life at high temperatures: ecological aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic Press, London, pp 159–195Google Scholar
  112. Tiquia-Arashiro SM (2014) Thermophilic carboxydotrophs and their biotechnological applications. Springerbriefs in microbiology: extremophilic microorganisms. Springer International Publishing, New York, p 131Google Scholar
  113. Tiquia-Arashiro SM, Rodrigues D (2016a) Alkaliphiles and acidophiles in nanotechnology. In: Extremophiles: applications in nanotechnology. Springer International Publishing, New York, pp 129–162CrossRefGoogle Scholar
  114. Tiquia-Arashiro SM, Rodrigues D (2016b) Thermophiles and psychrophiles in nanotechnology. In: Extremophiles: applications in nanotechnology. Springer International Publishing, New York, pp 89–127CrossRefGoogle Scholar
  115. Topakas E, Kalogeris E, Kekos D, Macris BJ, Christakopoulos P (2003) Bioconversion of ferulic acid into vanillic acid by the thermophilic fungus Sporotrichum thermophile. LWT-Food Sci Technol 36:561–565Google Scholar
  116. Tsiklinskaya P (1899) Sur les muce’dine’es thermophils. Ann Inst Pasteur 13:500–515Google Scholar
  117. Tubaki K, Ito T, Natsuda Y (1974) Aquatic sediment as habitat of thermophilic fungi. Ann Microbiol 24:199–207Google Scholar
  118. Venkatakrishna K, Moltke VLL, Greenblatt DJ (2000) Effects of the antifungal agents on oxidative drug metabolism: clinical relevance. Clin Pharmacokinet 38:111–180CrossRefGoogle Scholar
  119. Wandel C, Lang CC, Cowart DC, Girard AF, Bramer S, Flockhart DA, Wood AJ (1998) Effect of CYP3A inhibition on vesnarinone metabolism in humans. Clin Pharmacol Ther 63:506–511CrossRefPubMedPubMedCentralGoogle Scholar
  120. Watabe T (1996) Strategic proposals for predicting drug-drug interactions during new drug development: based on sixteen deaths caused by interactions of the new antiviral sorivudine with 5-fluorouracil prodrugs. J Toxicol Sci 21:299–300CrossRefPubMedPubMedCentralGoogle Scholar
  121. Wei Y, Li J, Qing J, Huang M, Wu M, Gao F, Li D, Hong Z, Kong L, Huang W, Lin J (2016) Discovery of novel hepatitis C virus NS5B polymerase inhibitors by combining random forest, multiple e-pharmacophore modeling and docking. PLoS One 11:e0148181CrossRefPubMedPubMedCentralGoogle Scholar
  122. Weigant WM (1992) Growth characteristics of Scytalidium thermophilum in relation to the production mushroom compost. Appl Environ Microbiol 58:1301–1307Google Scholar
  123. Wu K, Song J, Li T (2015) Production purification and identification of Cholest-en-3-one produced by cholesterol oxidase from Rhodococcus aqueous/organic biphase system. Biochem Insights 8:1–8PubMedPubMedCentralGoogle Scholar
  124. Yun CH, Lee HS, Lee H, Rho JK, Jeong HG, Guengerich FP (1995) Oxidation of the angiotensin II receptor antagonist Losartan (DUP 753) in human liver microsomes. Roles of cytochrome P4503A (4) in formation of the active metabolite EXP3174. Drug Metab Dispos 23:285–289PubMedPubMedCentralGoogle Scholar
  125. Zhang D, Freeman JP, Sutherland JB, Walker AE, Yang Y, Crniglia C (2006) Biotransformation of chlorpromazine and methdilazine by Cunninghamella elegans. Appl Environ Microbiol 62:798–803Google Scholar
  126. Zhong DF, Sun L, Liu L, Huang HH (2003) Microbial transformation of naproxen by Cunninghamella species. Acta Pharmacol Sin 24:442–447PubMedPubMedCentralGoogle Scholar
  127. Zohri AA, Abdel-Galil MSM (1999) Progesterone transformation by three species of Humicola. Folia Microbiol 44:277–282CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MicrobiologyVaagdevi Degree and Post Graduate CollegeWarangalIndia

Personalised recommendations