Skip to main content

Electronic Properties and Applications of MXenes from Ab Initio Calculations Perspective

  • Chapter
  • First Online:
2D Metal Carbides and Nitrides (MXenes)

Abstract

Chemical exfoliation of layered MAX phase compounds into novel two-dimensional transition metal carbides and nitrides, the so-called MXenes, has opened new opportunities in materials science and technology. In recent extensive theoretical studies, it has been demonstrated that MXenes containing transition metals with open d orbital shells exhibit a multitude of interesting properties because of different oxidation and spin states and a relatively large spin-orbit coupling of the transition metals. Hence, they provide an excellent platform for exploring and exploiting the internal degrees of freedom of electrons – charge, orbital, and spin – and their interplay for fundamental research and device applications. In this book chapter, we provide an insight into possibilities regarding the exfoliation of MAX phases into 2D MXenes. We then highlight the computational attempts that have been made to understand the physics and chemistry of the MXene family and to exploit their novel and unique properties for electronic and energy harvesting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barsoum, M. W. (2000). The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates. Progress in Solid State Chemistry, 28, 201–281.

    Article  CAS  Google Scholar 

  2. Wang, J., & Zhou, Y. (2009). Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides. Annual Review of Materials Research, 39, 415–443.

    Article  CAS  Google Scholar 

  3. Sun, Z. M. (2011). Progress in research and development on MAX phases: A family of layered ternary compounds. International Materials Review, 56, 143–166.

    Article  CAS  Google Scholar 

  4. Fashandi, H., Dahlqvist, M., Lu, J., Palisaitis, J., Simak, S. I., Abrikosov, I. A., Rosen, J., Hultman, L., Andersson, M., Spetz, A. L., Eklund, P. (2017). Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nature Materials, 16, 814–818.

    Article  CAS  Google Scholar 

  5. Horlait, D., Middleburgh, S. C., Chroneos, A., & Lee, W. E. (2016). Synthesis and DFT investigation of new bismuth-containing MAX phases. Scientific Reports, 6, 18829.

    Article  CAS  Google Scholar 

  6. Anasori, B., Dahlqvist, M., Halim, J., Moon, E. J., Lu, J., Hosler, B. C., Caspi, E. N., May, S. J., Hultman, L., Eklund, P., Rosén, J., & Barsoum, M. W. (2015). Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3. Journal of Applied Physics, 118, 94304.

    Article  CAS  Google Scholar 

  7. Meshkian, R., Tao, Q., Dahlqvist, M., Lu, J., Hultman, L., & Rosen, J. (2017). Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene. Acta Materialia, 125, 476–480.

    Article  CAS  Google Scholar 

  8. Tao, Q., Dahlqvist, M., Lu, J., Kota, S., Meshkian, R., Halim, J., Palisaitis, J., Hultman, L., Barsoum, M. W., Persson, P. O., & Rosen, J. (2017). Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nature Communications, 8, 14949.

    Google Scholar 

  9. Dahlqvist, M., Lu, J., Meshkian, R., Tao, Q., Hultman, L., & Rosen, J. (2017). Prediction and synthesis of a family of atomic laminate phases with Kagomé-like and in-plane chemical ordering. Science Advances, 3, e1700642.

    Article  CAS  Google Scholar 

  10. Talapatra A, Duong, T., Son, W., Gao, H., Radovic, M., & Arróyave, R. (2016). High-throughput combinatorial study of the effect of M site alloying on the solid solution behavior of M2AlC MAX phases. Physical Review B, 94, 104106.

    Article  CAS  Google Scholar 

  11. Ashton, M., Hennig, R. G., Broderick, S. R., Rajan, K., & Sinnott, S. B. (2016). Computational discovery of stable M2AX phases. Physical Review B, 94, 054116.

    Article  CAS  Google Scholar 

  12. Dahlqvist, M., Alling, B., & Rosén, J. (2010). Stability trends of MAX phases from first principles. Physical Review B, 81, 220102(R).

    Google Scholar 

  13. Dahlqvist, M., & Rosén, J. (2015). Order and disorder in quaternary atomic laminates from first-principles calculations. Physical Chemistry Chemical Physics, 17, 31810.

    Article  CAS  Google Scholar 

  14. Mo, Y., Rulis, P., & Ching, W. Y. (2012). Electronic structure and optical conductivities of 20 MAX-phase compounds. Physical Review B, 86, 165122.

    Article  CAS  Google Scholar 

  15. Aryal, S., Sakidja, R., Barsoum, M. W., & Ching, W. Y. (2014). A genomic approach to the stability, elastic, and electronic properties of the MAX phases. Physical Status Solidi B, 251, 1480–1497.

    Article  CAS  Google Scholar 

  16. Cover, M.F., Warschkow, O., Bilek, M. M. M., & McKenzie, D. R. (2009). A comprehensive survey of M2AX phase elastic properties. Journal of Physics Condensed Matter, 21, 305403.

    Article  CAS  Google Scholar 

  17. Khazaei, M., Arai, M., Sasaki, T., Estili, M., & Sakka, Y. (2014). Trends in electronic structures and structural properties of MAX phases: A first-principles study on M2AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases. Journal of Physics Condensed Matter, 26, 505503.

    Article  CAS  Google Scholar 

  18. Khazaei, M., Arai, M., Sasaki, T., Estili, M., & Sakka, Y. (2014). The effect of the interlayer element on the exfoliation of layered Mo2AC (A = Al, Si, P, Ga, Ge, As or In) MAX phases into two-dimensional Mo2C nanosheets. Science and Technology of Advanced Materials, 15, 014208.

    Article  CAS  Google Scholar 

  19. Arróyave, R., Talapatra, A., Duong, T., Son, W., Gao, H., & Radovic, M. (2017). Out-of-plane ordering in quaternary MAX alloys: An alloy theoretic perspective. Mathematical Research Letters, 5, 170–178.

    Google Scholar 

  20. Jiang, C., & Chroneos, A. (2018). Ab initio modeling of MAX phase solid solutions using the special quasirandom structure approach. Physical Chemistry Chemical Physics, 20, 1173–1180.

    Article  CAS  Google Scholar 

  21. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248–4253.

    Article  CAS  Google Scholar 

  22. Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2012). Two-dimensional transition metal carbides. ACS Nano, 6, 1322–1331.

    Article  CAS  Google Scholar 

  23. Soundiraraju, B., & George, B. K. (2017). Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano, 11, 8892–8900.

    Article  CAS  Google Scholar 

  24. Naguib, M., Halim, J., Lu, J., Cook, K. M., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2013). New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. Journal of the American Chemical Society, 135, 15966–15969.

    Article  CAS  Google Scholar 

  25. Meshkini, R., Näslund L. -Å., & Halim, J. (2015). Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. Scripta Materialia, 108, 147–150.

    Article  CAS  Google Scholar 

  26. Zhou, J., Zha, X., Chen, F. Y., Ye, Q., Eklund, P., Du, S., & Huang, Q. (2016). A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angewandte Chemie, International Edition, 55, 5008.

    Article  CAS  Google Scholar 

  27. Ghidiu, M., Naguib, M., Shi, C., Mashtalir, O., Pan, L. M., Zhang, B., Yang, J., Gogotsi, Y., Billinge, S. J. L., Barsoum, M. W. (2014). Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chemical Communications, 50, 9517.

    Article  CAS  Google Scholar 

  28. Urbankowski, P., Anasori, B., Makaryan, T., Er, D., Kota, S., Walsh, P. L., Zhao, M., Shenoy, V. B., Barsoum, M. W., Gogotsi, Y. (2016). Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 8, 11385.

    Article  CAS  Google Scholar 

  29. Anasori, B., Xie, Y., Beidaghi, M., Lu, J., Hosler, B. C., Hultman, L., Kent, P. R. C., Gogotsi, Y., & Barsoum, M. W. (2015). Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 9, 9507–9516.

    Article  CAS  Google Scholar 

  30. Yang, J., Naguib, M., Ghidiu, M., Pan, L. M., Gu, J., Nanda, J., Halim, J., Gogotsi, Y., & Barsoum, M. W. (2016). Two-dimensional Nb-based M4C3 solid solutions (MXenes). Journal of the American Ceramic Society, 99, 660.

    Article  CAS  Google Scholar 

  31. Khazaei, M., Arai, M., Sasaki, T., Chung, C. Y., Venkataramanan, N. S., Estili, M., Sakka, Y., & Kawazoe, Y. (2013). Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 23, 2185–2192.

    Article  CAS  Google Scholar 

  32. Khazaei, M., Arai, M., Sasaki, T., Estili, M., & Sakka, Y. (2014). Two-dimensional molybdenum carbides: Potential thermoelectric materials of the MXene family. Physical Chemistry Chemical Physics, 16, 7841–7849.

    Article  CAS  Google Scholar 

  33. Weng, H., Ranjbar, A., Liang, Y., Song, Z., Khazaei, M., Yunoki, S., Arai, M., Kawazoe, Y., Fang, Z., & Dai, X. (2015). Large-gap two-dimensional topological insulator in oxygen functionalized MXene. Physical Review B, 92, 075436.

    Article  CAS  Google Scholar 

  34. Khazaei, M., Ranjbar, A., Arai, M., & Yunoki, S. (2016). Topological insulators in the ordered double transition metals M\(^{\prime }_{2}\) M C2 MXenes (M=Mo, W; M =Ti, Zr, Hf). Physical Review B, 94, 125152.

    Google Scholar 

  35. Khazaei, M., Ranjbar A, Ghorbani-Asl, M., Arai, M., Sasaki, T., Liang, Y., & Yunoki, S. (2016). Nearly free electron states in MXenes. Physical Review B, 93, 205125.

    Article  CAS  Google Scholar 

  36. Khazaei, M., Arai, M., Sasaki, T., Ranjbar, A., Liang, Y., & Yunoki, S. (2015). OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials. Physical Review B, 92, 075411.

    Article  CAS  Google Scholar 

  37. Liang, Y., Khazaei, M., Ranjbar, A., Arai, M., Yunoki, S., Kawazoe, Y., Weng, H., & Fang, Z. (2017). Large-gap two-dimensional topological insulator in oxygen functionalized MXene. Physical Review B, 96, 195414.

    Article  Google Scholar 

  38. Lashgari, H., Abolhassani, M. R., Boochani, A., Elahi, S. M., & Khodadadi, J. (2014). Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations. Solid State Communications, 195, 61–69.

    Article  CAS  Google Scholar 

  39. Guo, Z., Zhou, J., Si, C., & Sun, Z. (2015). Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Physical Chemistry Chemical Physics, 17, 15348.

    Article  CAS  Google Scholar 

  40. Si, C., Zhou, J., & Sun, Z. (2015). Half-metallic ferromagnetism and surface functionalization-induced metal–insulator transition in graphene-like two-dimensional Cr2C crystals. ACS Applied Materials & Interfaces, 7, 17510–17515.

    Article  CAS  Google Scholar 

  41. He, J., Lyu, P., Sun, L. Z., García Á, M., & Nachtigall, P. (2016). High temperature spin-polarized semiconductivity with zero magnetization in two-dimensional Janus MXenes. Journal of Materials Chemistry C, 4, 6500–6509.

    Google Scholar 

  42. Je, M., Lee, Y., & Chung, Y. C. (2016). Structural stability and electronic properties of multi-functionalized two-dimensional chromium carbides. Thin Solid Films, 619, 131–136.

    Article  CAS  Google Scholar 

  43. Gao, G., Ding, G., Li, J., Yao, K., Wu, M., & Qian, M. (2016). Monolayer MXenes: promising half-metals and spin gapless semiconductors. Nanoscale, 8, 8986–8994.

    Article  CAS  Google Scholar 

  44. Kumar, H., Frey, N. C., Dong, L., Anasori, B., Gogotsi, Y., & Shenoy, V. B. (2017). Tunable magnetism and transport properties in nitride MXenes. ACS Nano, 11, 7648–7655.

    Article  CAS  Google Scholar 

  45. Guo, Z., Zhou, J., Zhu, L., & Sun, Z. (2016). MXene: A promising photocatalyst for water splitting. Journal of Materials Chemistry A, 4, 11446–11452.

    Article  CAS  Google Scholar 

  46. Yu, X. F., Li, Y., Cheng, J. B., Liu, Z. B., Li, Q. Z., Li, W. Z., Yang, X., & Xiao, B. (2015). Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Applied Materials & Interfaces, 7, 13707–13713.

    Article  CAS  Google Scholar 

  47. Lee, Y., Hwang, Y., & Chung, Y. C. (2015). Achieving Type I, II, and III heterojunctions using functionalized MXene. ACS Applied Materials & Interfaces, 7, 7163–7169.

    Article  CAS  Google Scholar 

  48. Yang, Y., Umrao, S., Lai, S., & Lee, S. (2017). Large-area highly conductive transparent two-dimensional Ti2CTx film. Journal of Physical Chemistry Letters, 8, 859–865.

    Article  CAS  Google Scholar 

  49. Lai, S., Jeong, J., Jang, S. K., Xu, J., Choi, Y. J., Park, J. P., Hwang, E., & Lee, S. (2015). Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: –OH, –F and –O). Nanoscale, 7, 19390–19396.

    Article  CAS  Google Scholar 

  50. Shahzad, F., Alhabeb, M., Hatter, C. B., Anasori, B., Hong, S. M., Koo, C. M., & Gogotsi, Y. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353, 1137–1140.

    Article  CAS  Google Scholar 

  51. Rakhi, R. B., Ahmed, B., Hedhili, M. N., Anjum, D. H., & Alshareef, H. N. (2015). Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chemistry of Materials, 27, 5314–5323.

    Article  CAS  Google Scholar 

  52. Xie, Y., Dall’Agnese, Y., Naguib, M., Gogotsi, Y., Barsoum, M. W., Zhuang, H. L., & Kent, P. R. C. (2014). Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano, 8, 9606–9615.

    Article  CAS  Google Scholar 

  53. Kim, H., Anasori, B., Gogotsi, Y., & Alshareef, H. N. (2017). Ladder-type dithienonaphthalene-based small-molecule acceptors for efficient nonfullerene organic solar cells. Chemistry of Materials, 29, 6472–6479.

    Article  CAS  Google Scholar 

  54. Lin, H., Wang, X., Yu, L., Chen, Y., & Shi, J. (2017). Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Letter, 17, 384–391.

    Article  CAS  Google Scholar 

  55. Fan, G., Li, X., Ma, Y., Zhang, Y., Wu, J., Xu, B., Sun, T., Gao, D., & Bi, J. (2017). Magnetic, recyclable PtyCo1−y/Ti3C2X2 (X = O, F) catalyst: A facile synthesis and enhanced catalytic activity for hydrogen generation from the hydrolysis of ammonia borane. New Journal of Chemistry, 41, 2793–2799.

    Article  CAS  Google Scholar 

  56. Ran, J., Gao, G., Li, F. T., Ma, T. Y., Du, A., & Qiao, S. Z. (2017). Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 8, 13907.

    Article  CAS  Google Scholar 

  57. Zhang, X., Xu, J., Wang, H., Zhang, J., Yan, H., Pan, B., Zhou, J., Xie, Y. (2013). Ultrathin nanosheets of MAX phases with enhanced thermal and mechanical properties in polymeric compositions: Ti3Si0.75Al0.25C2. Angewandte Chemie International Edition England, 52, 4361.

    Google Scholar 

  58. Xue, M., Wang, Z., Yuan, F., Zhang, X., Wei, W., Tang, H., & Li, C. (2017). Preparation of TiO2/Ti3C2Tx hybrid nanocomposites and their tribological properties as base oil lubricant additives. RSC Advances, 7, 4312–4319.

    Article  CAS  Google Scholar 

  59. Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Review, 2, 16098.

    CAS  Google Scholar 

  60. Khazaei, M., Ranjbar, A., Arai, M., Sasaki, T., & Yunoki, S. (2017). Electronic properties and applications of MXenes: A theoretical review. Journal of Materials Chemistry C, 5, 2488–2503.

    Article  CAS  Google Scholar 

  61. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865.

    Article  CAS  Google Scholar 

  62. Cohen, A. J., Mori-Sáchez, P., & Yang, W. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 729.

    Google Scholar 

  63. Guo, Z., Zhu, L., Zhou, J., & Sun, Z. (2015). Microscopic origin of MXenes derived from layered MAX phases. RSC Advances, 5, 25403–25408.

    Article  CAS  Google Scholar 

  64. Khazaei, M., Ranjbar, A., Esfarjani, K., Bogdanovski, D., Dronskowski, R., & Yunoki, S. (2018). Insights into exfoliation possibility of MAX phases to MXenes. Physical Chemistry Chemical Physics, 20, 8579–8592.

    Article  CAS  Google Scholar 

  65. Togo, A., Oba, F., & Tanaka, I. (2008). First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Physical Review B, 78, 134106.

    Article  CAS  Google Scholar 

  66. Foreman, A. J. E., & Lomer, W. M. (1957). Lattice vibrations and harmonic forces in solids. Proceedings of the Physical Society. Section B, 70, 1143.

    Article  Google Scholar 

  67. Liu, Y., Chua, K. T. E., Sum, T. C., & Gan, C. K. (2014). First-principles study of the lattice dynamics of Sb2S3. Physical Chemistry Chemical Physics, 16, 345–350.

    Article  CAS  Google Scholar 

  68. Henkelman, G., Arnaldsson, A., & Jónsson, H. (2006). A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 36, 354–360.

    Article  Google Scholar 

  69. Sanville, E., Kenny, S. D., Smith, R., & Henkelman, G. (2007). Improved grid-based algorithm for Bader charge allocation. Journal of Combinatorial Chemistry, 28, 899–908.

    CAS  Google Scholar 

  70. Tang, W., Sanville, E., & Henkelman, G. (2009). A grid-based Bader analysis algorithm without lattice bias. Journal Physics Computer Materials, 21, 084204.

    CAS  Google Scholar 

  71. Zheng, L., Wang, J., Lu, X., Li, F., Wang, J., & Zhou, Y. (2010). (Ti0.5Nb0.5)5AlC4: A new-layered compound belonging to MAX phases. Journal of the American Ceramic Society, 93, 3068–3071.

    Article  CAS  Google Scholar 

  72. Gabriel, J. C. P., Camerel, F., Lemaire, B. J., Desvaux, H., Davidson, P., Batail, P. (2001). Swollen liquid-crystalline lamellar phase based on extended solid-like sheets. Nature, 413, 504–508.

    Article  CAS  Google Scholar 

  73. Kaasik, F., Tamm, T., Hantel, M. M., Perre, E., Aabloo, A., Lust, E., Bazant, M. Z., Presser, V. (2013). Anisometric charge dependent swelling of porous carbon in an ionic liquid. Electrochemistry Communications, 34, 196–199.

    Article  CAS  Google Scholar 

  74. Fernádez-Nieves, A., Fernández-Barbero, A., Vincent, B., & Neives, F. J. (2000). Charge controlled swelling of microgel particles. Macromolecules, 33, 2114–2118.

    Article  CAS  Google Scholar 

  75. Riley, J. K., Matyjaszewski, K., & Tilton, R. D. (2014). Electrostatically controlled swelling and adsorption of polyelectrolyte brush-grafted nanoparticles to the solid/liquid interface. Langmuir, 30, 4056–4065.

    Article  CAS  Google Scholar 

  76. Rosenfeldt, S., Stöter, M., Schlenk, M., Martin, T., Albuquerque, R. Q., Förster, S., & Breu, J. (2016). In-depth insights into the key steps of delamination of charged 2D nanomaterials. Langmuir, 32, 10582–10588.

    Article  CAS  Google Scholar 

  77. Laird, D. A. (2006). Influence of layer charge on swelling of smectites. Applied Clay Science, 34, 74–87.

    Article  CAS  Google Scholar 

  78. Mohan, K. K., & Fogler, H. S. (1997). Effect of pH and layer charge on formation damage in porous media containing swelling clays. Langmuir, 13, 2863–2872.

    Article  CAS  Google Scholar 

  79. Suquet, H., Iiyama, J. T., Kodama, H., & Pezerat, H. (1977). Synthesis and swelling properties of saponites with increasing layer charge. Clays and Clay Minerals, 25, 231–242.

    Article  CAS  Google Scholar 

  80. Fitch, A., Du, J., Gan, H., & Stucki, J. W. (1995). Effect of clay charge on swelling: A clay-modified electrode study. Clays and Clay Minerals, 43, 607–614.

    Article  CAS  Google Scholar 

  81. Zahn, R., Vörös, J., & Zambelli, T. (2014). Tuning the electrochemical swelling of polyelectrolyte multilayers toward nanoactuation. Langmuir, 30, 12057–12066.

    Article  CAS  Google Scholar 

  82. Pazos, M. C., Castro, M. A., Cota, A., Osuna, F. J., Pavón, E., & Alba, M. D. (2017). New insights into surface-functionalized swelling high charged micas: Their adsorption performance for non-ionic organic pollutants. Journal of Industrial and Engineering Chemistry, 52, 179–186.

    Article  CAS  Google Scholar 

  83. Pruneda, J. M., Archer, T. D., & Artacho, E. (2004). Intrinsic point defects and volume swelling in ZrSiO4 under irradiation. Physical Review B, 70, 104111.

    Article  CAS  Google Scholar 

  84. Hope, M. A., Forse, A. C., Griffith, K. J., Lukatskaya, M. R., Ghidiu, M., Gogotsi, Y., & Grey, C. P. (2016). NMR reveals the surface functionalisation of Ti3C2 MXene. Physical Chemistry Chemical Physics, 18, 5099.

    Article  CAS  Google Scholar 

  85. Wang, H. W., Naguib, M., Page, K., Wesolowski, D. J., & Gogotsi, Y. (2016). Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chemistry of Materials, 28, 349.

    Article  CAS  Google Scholar 

  86. Sharma, G., Naguib, M., Feng, D., Gogotsi, Y., & Navrotsky, A. (2016). Calorimetric determination of thermodynamic stability of MAX and MXene phases. Journal of Physical Chemistry C, 120, 28131.

    Article  CAS  Google Scholar 

  87. Magne, D., Mauchamp, V., Céléirer, S., Chartier, P., & Cabioćh, T. (2016). Site-projected electronic structure of two-dimensional Ti3C2 MXene: The role of the surface functionalization groups. Physical Chemistry Chemical Physics, 18, 30946.

    Article  CAS  Google Scholar 

  88. Fredrickson, K. D., Anasori, B., Seh, Z. W., Gogotsi, Y., Vojvodic, A. (2016). Effects of applied potential and water intercalation on the surface chemistry of Ti2C and Mo2C MXenes. Journal of Physical Chemistry C, 120, 28432.

    Article  CAS  Google Scholar 

  89. Srivastava, P., Mishra, A., Mizuseki, H., Lee, K. R., & Singh, A. K. (2016). Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Applied Materials & Interfaces, 8, 24256–24264.

    Article  CAS  Google Scholar 

  90. Mishra, A., Srivastava, P., Mizuseki, H., Lee, K. R., & Singh, A. K. (2016). Isolation of pristine MXene from Nb4AlC3 MAX phase: A first-principles study. Physical Chemistry Chemical Physics, 18, 11073–11080.

    Article  CAS  Google Scholar 

  91. Mishra, A., Srivastava, P., Carreras, A., Tanaka, I., Mizuseki, H., Lee, K. R., & Singh, A. K. (2017). Atomistic origin of phase stability in oxygen-functionalized MXene: A comparative study. Journal of Physical Chemistry C, 121, 18947.

    Article  CAS  Google Scholar 

  92. Li, W. X., Stampfl, C., & Scheffler, M. (2003). Insights into the function of silver as an oxidation catalyst by ab initio atomistic thermodynamics. Physical Review B, 68, 165412.

    Article  CAS  Google Scholar 

  93. Hu, T., Li, Z., Hu, M., Wang, J., Hu, Q., Li, Q., & Wang, X. (2017). Chemical origin of termination-functionalized MXenes: Ti3C2T2 as a case study. Journal of Physical Chemistry C, 121, 19254.

    Article  CAS  Google Scholar 

  94. Ashton, M., Mathew, K., Hennig, R. G., & Sinnott, S. B. (2016). Predicted surface composition and thermodynamic stability of MXenes in solution. Journal of Physical Chemistry C, 120, 3550.

    Article  CAS  Google Scholar 

  95. Yorulmaz, U., Özden, A., Perkgöz, N. K., Ay, F., & Sevik, C. (2016). Vibrational and mechanical properties of single layer MXene structures: A first-principles investigation. Nanotechnology, 27, 335702.

    Article  CAS  Google Scholar 

  96. Hu, T., Wang, J., Zhang, H., Li, Z., Hu, M., & Wang, X. (2015). The identification and characterization of defect states in hybrid organic–inorganic perovskite photovoltaics. Physical Chemistry Chemical Physics, 17, 9997.

    Article  CAS  Google Scholar 

  97. Li, L. (2016). Lattice dynamics and electronic structures of Ti3C2O2 and Mo2TiC2O2 (MXenes): The effect of Mo substitution. Computational Materials Science, 124, 8.

    Article  CAS  Google Scholar 

  98. Si, C., Jin, K. H., Zhou, J., Sun, Z., & Liu, F. (2016). Large-gap quantum spin Hall state in MXenes: d-band topological order in a triangular lattice. Nano Letter, 16, 6584.

    Article  CAS  Google Scholar 

  99. Si, C., You, J., Shi, W., Zhou, J., & Sun, Z. (2016). Quantum spin Hall phase in Mo2M2C3O2 (M = Ti, Zr, Hf) MXenes. Journal of Materials Chemistry C, 4, 11524.

    Article  CAS  Google Scholar 

  100. Lee, Y., Cho, S. B., & Chung, Y. C. (2014). Tunable indirect to direct band gap transition of monolayer Sc2CO2 by the strain effect. ACS Applied Materials & Interfaces, 6, 14724.

    Article  CAS  Google Scholar 

  101. Yu, X. F., Cheng, J. B., Liu, Z. B., Li, Q. Z., Li, W. Z., Yang, X., Xiao, B. (2015). The band gap modulation of monolayer Ti2CO2 by strain. RSC Advances, 5, 30438.

    Article  CAS  Google Scholar 

  102. Lee, Y., Hwang, Y., Cho, S. B., & Chung, Y. C. (2014). Achieving a direct band gap in oxygen functionalized-monolayer scandium carbide by applying an electric field. Physical Chemistry Chemical Physics, 16, 26273.

    Article  CAS  Google Scholar 

  103. Li, L. (2016). Effects of the interlayer interaction and electric field on the band gap of polar bilayers: a case study of Sc2CO2. Journal of Physical Chemistry C, 120, 24857.

    Article  CAS  Google Scholar 

  104. Tao, Q., Dahlqvist, M., Lu, J., Kota, S., Meshkian, R., Halim, J., Palisaitis, J., Hultman, L., Barsoum, M. W., Persson, P. O., & Rosen, J. (2017). Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nature Communications, 8, 14949.

    Google Scholar 

  105. Khazaei, M., Wang, V., Sevik, C., Ranjbar, A., Arai, M., & Yunoki, S. (2018). Electronic structures of iMAX phases and their two-dimensional derivatives: A family of piezoelectric materials. Physical Review Materials, 2, 074002.

    Article  CAS  Google Scholar 

  106. Fu, L., Kane, C. L., & Mele, E. J. (2007). Topological insulators in three dimensions. Physical Review Letters, 98, 106803.

    Article  CAS  Google Scholar 

  107. Fu, L., & Kane, C. L. (2007). Topological insulators with inversion symmetry. Physical Review B, 76, 045302.

    Article  CAS  Google Scholar 

  108. Hasan, M. Z., & Kane, C. L. (2010). Colloquium: topological insulators. Reviews of Modern Physics, 82, 3045.

    Article  CAS  Google Scholar 

  109. Qi, X. L., & Zhang, S. C. (2011). Topological insulators and superconductors. Reviews of Modern Physics, 83, 1057.

    Article  CAS  Google Scholar 

  110. Yan, B., & Zhang, S. C. (2012). Topological materials. Reports on Progress in Physics, 75, 096501.

    Article  CAS  Google Scholar 

  111. Weng, H., Yu, R., Hu, X., Dai, X., & Fang, Z. (2015). Quantum anomalous Hall effect and related topological electronic states. Advances in Physics, 64, 227.

    Article  CAS  Google Scholar 

  112. Chadov, S., Qi, X., Kübler, J., Fecher, G. H., Felser, C., & Zhang, S. C. (2010). Tunable multifunctional topological insulators in ternary Heusler compounds. Nature Materials, 9, 541.

    Article  CAS  Google Scholar 

  113. Lin, H., Wray, L. A., Xia, Y., Xu, X., Jia, S., Cava, R. J., Bansil, A., & Hasan, M. Z. (2010). Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nature, 9, 546.

    Article  CAS  Google Scholar 

  114. Zhang, H., & Zhang, S. C. (2012). Topological insulators from the perspective of first-principles calculations. Physica Status Solidi RRL, 7, 72.

    Article  CAS  Google Scholar 

  115. Yan, B., Müchler, L., & Felser, C. (2012). Prediction of weak topological insulators in layered semiconductors. Physical Review Letters, 109, 116406.

    Article  CAS  Google Scholar 

  116. Yang, M., & Liu, W. M. (2014). The d-p band-inversion topological insulator in bismuth-based skutterudites. Scientific Reports, 4, 5131.

    Article  CAS  Google Scholar 

  117. Zhou, L., Kou, L., Sun, Y., Felser, C., Hu, F., Shan, G., Smith, S. C., Yan, B., & Frauenheim, T. (2015). New family of quantum spin Hall insulators in two-dimensional transition-metal halide with large nontrivial band gaps. Nano Letter, 15, 7867.

    Article  CAS  Google Scholar 

  118. Ma, Y., Kou, L., Dai, Y., & Heine, T. (2016). Discovery of a two-dimensional topological insulator in SiTe. Physical Review B, 94, 201104.

    Article  Google Scholar 

  119. Liu, P. F., Zhou, L., Frauenheim, T., & Wu, L. M. (2016). New quantum spin Hall insulator in two-dimensional MoS2 with periodically distributed pores. Nanoscale, 8, 4915.

    Article  CAS  Google Scholar 

  120. Weng, H., Dai, X., & Fang, Z. (2014). Transition-metal pentatelluride ZrTe5 and HfTe5: A paradigm for large-gap quantum spin Hall insulators. Physical Review X, 4, 011002.

    Article  CAS  Google Scholar 

  121. Sun, Y., Felser, C., & Yan, B. (2015). Graphene-like dirac states and quantum spin Hall insulators in square-octagonal MX2 (M=Mo, W; X=S, Se, Te) isomers. Physical Review B, 92, 165421.

    Article  CAS  Google Scholar 

  122. Leung, T. C., Kao, C. L., Su, W. S., Feng, Y. J., & Chan, C. T. (2003). Relationship between surface dipole, work function and charge transfer: Some exceptions to an established rule. Physical Review B, 68, 195408.

    Article  CAS  Google Scholar 

  123. Silvi, B., & Savin, A. (1994). Classification of chemical bonds based on topological analysis of electron localization functions. Nature, 371, 683.

    Article  CAS  Google Scholar 

  124. Peng, Q., Guo, J., Zhang, Q., Xiang, J., Liu, B., Zhou, A., Liu, R., & Tian, Y. (2014). Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. Journal of the American Chemical Society, 136, 4113.

    Article  CAS  Google Scholar 

  125. Guo, J., Peng, Q., Fu, H., Zou, G., & Zhang, Q. (2015). Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. Journal of Physical Chemistry C, 119, 20923.

    Article  CAS  Google Scholar 

  126. Zebarjadi, M., Esfarjani, K., Dresselhaus, M. S., Ren, Z. F., & Chen, G. (2012). Perspectives on thermoelectrics: From fundamentals to device applications. Energy and Environmental Science, 5, 5147.

    Article  Google Scholar 

  127. Nolas, G. S., Sharp, J., & Goldsmid, H. J. (2001). Thermoelectrics: Basic principles and new materials developments. Berlin: Springer.

    Book  Google Scholar 

  128. May, A. F., Singh, D. J., & Snyder, G. J. (2009). Influence of band structure on the large thermoelectric performance of lanthanum telluride. Physical Review B, 79, 153101.

    Article  CAS  Google Scholar 

  129. Singh, D. J., & Mazin, I. I. (1997). Calculated thermoelectric properties of La-filled skutterudites. Physical Review B, 56, 1650.

    Article  Google Scholar 

  130. Singh, D. J. (2010). Doping-dependent thermopower of PbTe from Boltzmann transport calculations. Physical Review B, 81, 195217.

    Article  CAS  Google Scholar 

  131. Madsen, G. K. H., & Singh, D. J. (2006). BoltzTraP. A code for calculating band-structure dependent quantities. Computer Physics Communications, 175, 67.

    Google Scholar 

  132. Madsen, G. K. H. (2006). Automated search for new thermoelectric materials: The case of LiZnSb. Journal of the American Chemical Society, 128, 12140.

    Article  CAS  Google Scholar 

  133. Yang, J., Li, H., Wu, T., Zhang, W., Chen, L., & Yang, J. (2008). Evaluation of Half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Advanced Functional Materials, 18, 2880.

    Article  CAS  Google Scholar 

  134. Hao, L., & Lee, T. K. (2010). Thermopower of gapped bilayer graphene. Physical Review B, 81, 165445.

    Article  CAS  Google Scholar 

  135. Onoue, M., Ishii, F., & Oguchi, T. (2008). Electronic and thermoelectric properties of the intermetallic compounds MNiSn (M = Ti, Zr, and Hf). Journal of the Physical Society of Japan, 77, 054706.

    Article  CAS  Google Scholar 

  136. Gandi, A. N., Alshareef, H. N., & Schwingenschlögl, U. (2016). Thermoelectric performance of the MXenes M2CO2 (M = Ti, Zr, or Hf). Chemistry of Materials, 28, 1647.

    Article  CAS  Google Scholar 

  137. Zha, X. H., Huang, Q., He, J., He, H., Zhai, J., Francisco, J. S., & Du, S. (2016). The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Scientific Reports, 6, 27971.

    Article  Google Scholar 

  138. Kumar, S., & Schwingenschlögl, U. (2016). Thermoelectric performance of functionalized Sc2C MXenes. Physical Review B, 94, 035405.

    Article  CAS  Google Scholar 

  139. Zha, X. H., Zhou, J., Zhou, Y., Huang, Q., He, J., Francisco, J. S., Luoa, K., & Du, S. (2016). Promising electron mobility and high thermal conductivity in Sc2CT2 (T = F, OH) MXenes. Nanoscale, 8, 6110.

    Article  CAS  Google Scholar 

  140. Zha, X. H., Yin, J., Zhou, Y., Huang, Q., Luo, K., Lang, J., Francisco, J. S., He, J., & Du, S. (2016). Intrinsic structural, electrical, thermal, and mechanical properties of the promising conductor Mo2C MXene. Journal of Physical Chemistry C, 120, 15082.

    Article  CAS  Google Scholar 

  141. Sarikurt, S., Çakir, D., Keçeil, M., & Sevik, C. (2018). The influence of surface fuctionalization on thermal transport and thermoelectric properties of MXene monolayers. Nanoscale, 10, 8859–8868.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.K. and A.R. are grateful to RIKEN Advanced Center for Computing and Communication (ACCC) for the allocation of computational resources of the RIKEN supercomputer system (HOKUSAI GreatWave). Some of the calculations were also performed on Numerical Materials Simulator at NIMS. M.K. gratefully acknowledges the support by Grant-in-Aid for Scientific Research (No. 17K14804) from MEXT Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Khazaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khazaei, M., Ranjbar, A., Liang, Y., Yunoki, S. (2019). Electronic Properties and Applications of MXenes from Ab Initio Calculations Perspective. In: Anasori, B., Gogotsi, Y. (eds) 2D Metal Carbides and Nitrides (MXenes). Springer, Cham. https://doi.org/10.1007/978-3-030-19026-2_14

Download citation

Publish with us

Policies and ethics