Advertisement

MXene–Organic Hybrid Materials

  • Muhammad Boota
Chapter

Abstract

Organic–inorganic hybrid materials are important class of materials which find applications in electrochemical energy conversion and storage, electronics, optics, biomedical applications, and many other areas of our daily life. Material properties of hybrid nanomaterials can be improved by changing either organic or inorganic component in a given hybrid matrix resulting in nearly unlimited combinations of innovative materials. MXenes are 2D inorganic sheets which are known for their metallic conductivity, high mechanical strength, hydrophilicity, and structural diversity. These properties are much needed in an inorganic component of a hybrid material. While the potential of MXenes in their pristine form is well documented, their applications in manufacturing organic–inorganic hybrid nanomaterials are relatively less explored. In this chapter, we have reported recent advances in MXene–organic hybrid materials. We summarized various MXene–organic hybrid synthesis approaches such as oxidant-free polymerization, self-assembly, diazonium chemistry, and others. With the help of computational methods, we have explained the host–guest interaction mechanisms, charge transfer mechanisms, and propagation of monomers into polymers. The role of polarity in organic molecules/polymers is discussed which may guide the design of new MXene–organic hybrid materials with well-defined properties for a variety of applications. We have also summarized the properties and various applications of MXene–organic hybrids. This chapter concludes with the remaining challenges and outlook to our readers.

Keywords

MXene Hybrid material Composite MXene–polymer Titanium carbide 

References

  1. 1.
    Bonaccorso, F., et al. (2015). Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 347, 1246501-1–1246501-9.CrossRefGoogle Scholar
  2. 2.
    Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191.CrossRefGoogle Scholar
  3. 3.
    Pomerantseva, E., & Gogotsi, Y. (2017). Two-dimensional heterostructures for energy storage. Nature Energy, 2(1–6).Google Scholar
  4. 4.
    Zhang, X., Lai, Z., Ma, Q., & Zhang, H. (2018). Novel structured transition metal dichalcogenide nanosheets. Chemical Society Reviews, 47, 3301–3338.CrossRefGoogle Scholar
  5. 5.
    Novoselov, K. S., Mishchenko, A., Carvalho, A., & Castro Neto, A. H. (2016). 2D materials and van der Waals heterostructures. Science, 353, aac9439.CrossRefGoogle Scholar
  6. 6.
    Huang, Y. L., et al. (2018). The organic-2D transition metal dichalcogenide heterointerface. Chemical Society Reviews, 47, 3241–3264.CrossRefGoogle Scholar
  7. 7.
    Burkhardt, S. E., et al. (2012). Tailored redox functionality of small organics for pseudocapacitive electrodes. Energy & Environmental Science, 5, 7176.CrossRefGoogle Scholar
  8. 8.
    Gracia, R., & Mecerreyes, D. (2013). Polymers with redox properties: Materials for batteries, biosensors and more. Polymer Chemistry, 4, 2206–2214.CrossRefGoogle Scholar
  9. 9.
    Schon, T. B., McAllister, B. T., Li, P.-F., & Seferos, D. S. (2016). The rise of organic electrode materials for energy storage. Chemical Society Reviews, 45, 6345–6404.CrossRefGoogle Scholar
  10. 10.
    Casado, N., Hernández, G., Sardon, H., & Mecerreyes, D. (2016). Current trends in redox polymers for energy and medicine. Progress in Polymer Science, 52, 107–135.CrossRefGoogle Scholar
  11. 11.
    Boota, M., Hatzell, K. B., Kumbur, E. C., & Gogotsi, Y. (2015). Towards high energy density pseudocapacitive flowable electrodes via incorporation of hydroquinone. ChemSusChem, 8, 835–843.CrossRefGoogle Scholar
  12. 12.
    Boota, M., Chen, C., Bécuwe, M., Miao, L., & Gogotsi, Y. (2016). Pseudocapacitance and excellent cyclability of 2,5-dimethoxy-1,4-benzoquinone on graphene. Energy & Environmental Science, 9, 2586–2594.CrossRefGoogle Scholar
  13. 13.
    Yang, Y., Gupta, M. C., Dudley, K. L., & Lawrence, R. W. (2005). Novel carbon nanotube−polystyrene foam composites for electromagnetic interference shielding. Nano Letters, 5, 2131–2134.CrossRefGoogle Scholar
  14. 14.
    Chujo, Y. (1996). Organic—Inorganic hybrid materials. Current Opinion in Solid State & Materials Science, 1, 806–811.CrossRefGoogle Scholar
  15. 15.
    Wang, H., & Dai, H. (2013). Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chemical Society Reviews, 42, 3088–3113.CrossRefGoogle Scholar
  16. 16.
    Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2, 16098.CrossRefGoogle Scholar
  17. 17.
    Tan, T. L., Jin, H. M., Sullivan, M. B., Anasori, B., & Gogotsi, Y. (2017). High-throughput survey of ordering configurations in MXene alloys across compositions and temperatures. ACS Nano, 11, 4407–4418.CrossRefGoogle Scholar
  18. 18.
    Naguib, M., et al. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248–4253.CrossRefGoogle Scholar
  19. 19.
    Naguib, M., & Gogotsi, Y. (2015). Synthesis of two-dimensional materials by selective extraction. Accounts of Chemical Research, 48, 128–135.CrossRefGoogle Scholar
  20. 20.
    Wang, H.-W., Naguib, M., Page, K., Wesolowski, D. J., & Gogotsi, Y. (2016). Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chemistry of Materials, 28, 349–359.CrossRefGoogle Scholar
  21. 21.
    Alhabeb, M., et al. (2017). Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 29, 7633–7644.CrossRefGoogle Scholar
  22. 22.
    Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2014). 25th anniversary article: MXenes: A new family of two-dimensional materials. Advanced Materials, 26, 992–1005.CrossRefGoogle Scholar
  23. 23.
    Boota, M., et al. (2015). Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Advanced Materials, 28, 1517–1522.CrossRefGoogle Scholar
  24. 24.
    Ling, Z., et al. (2014). Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 111, 16676–16681.CrossRefGoogle Scholar
  25. 25.
    Chen, C., et al. (2018). Effect of glycine functionalization of 2D titanium carbide (MXene) on charge storage. Journal of Materials Chemistry A, 6, 4617–4622.CrossRefGoogle Scholar
  26. 26.
    Hu, L., Ren, Y., Yang, H., & Xu, Q. (2014). Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-ion battery applications. ACS Applied Materials & Interfaces, 6, 14644–14652.CrossRefGoogle Scholar
  27. 27.
    Biswas, S., & Drzal, L. T. (2010). Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chemistry of Materials, 22, 5667–5671.CrossRefGoogle Scholar
  28. 28.
    Huang, J., & Kaner, R. B. (2004). Nanofiber formation in the chemical polymerization of aniline: A mechanistic study. Angewandte Chemie International Edition, 43, 5817–5821.CrossRefGoogle Scholar
  29. 29.
    Dan, L. I., Huang, J., & Kaner, R. B. (2009). Polyaniline nanofibers: A unique polymer nanostructure for versatile applications. Accounts of Chemical Research, 42, 135–145.CrossRefGoogle Scholar
  30. 30.
    Sajedi-Moghaddam, A., Saievar-Iranizad, E., & Pumera, M. (2017). Two-dimensional transition metal dichalcogenide/conducting polymer composites: Synthesis and applications. Nanoscale, 9, 8052–8065.CrossRefGoogle Scholar
  31. 31.
    Chen, C., et al. (2017). Charge transfer induced polymerization of EDOT confined between 2D titanium carbide layers. Journal of Materials Chemistry A, 5, 5260–5265.CrossRefGoogle Scholar
  32. 32.
    Sadki, S., Schottland, P., Brodie, N., & Sabouraud, G. (2000). The mechanisms of pyrrole electropolymerization. Chemical Society Reviews, 29, 283–293.CrossRefGoogle Scholar
  33. 33.
    Jones, R., Bean, A., & Gerritt, P. (2013). The chemistry of pyrroles: Organic chemistry: A series of monographs. New York: Academic Press.Google Scholar
  34. 34.
    Yuan, X., Zeng, X., Zhang, H., Ma, Z., & Wang, C. (2010). Improved performance of proton exchange membrane fuel cells with p-toluenesulfonic acid-doped co-PPy/C as cathode electrocatalyst. Journal of the American Chemical Society, 132, 1754–1755.CrossRefGoogle Scholar
  35. 35.
    Gupta, S. (2008). Hydrogen bubble-assisted syntheses of polypyrrole micro/nanostructures using electrochemistry: Structural and physical property characterization. Journal of Raman Specroscopy, 39, 1343–1355.CrossRefGoogle Scholar
  36. 36.
    Zang, J., et al. (2008). Template-free electrochemical synthesis of superhydrophilic polypyrrole nanofiber network. Macromolecules, 41, 7053–7057.CrossRefGoogle Scholar
  37. 37.
    Hoogboom, J., & Swager, T. M. (2006). Increased alignment of electronic polymers in liquid crystals via hydrogen bonding extension. Journal of the American Chemical Society, 128, 15058–15059.CrossRefGoogle Scholar
  38. 38.
    Yan, J., et al. (2014). Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors. ACS Nano, 8, 4720–4729.CrossRefGoogle Scholar
  39. 39.
    Lukatskaya, M. R., et al. (2013). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341, 1502–1505.CrossRefGoogle Scholar
  40. 40.
    Kalambate, P. K., Dar, R. A., Karna, S. P., & Srivastava, A. K. (2015). High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy carbon electrode. Journal of Power Sources, 276, 262–270.CrossRefGoogle Scholar
  41. 41.
    Wallace, G. G., Teasdale, P. R., Spinks, G. M., Leon, P. A., & Kane-Maguir. (2008). Conductive electroactive polymers: Intelligent polymer systems. Boca Raton: Taylor & Francis, CRC Press.Google Scholar
  42. 42.
    Boota, M., et al. (2015). Waste tire derived carbon-polymer composite paper as pseudocapacitive electrode with long cycle life. ChemSusChem, 8, 3576–3581.CrossRefGoogle Scholar
  43. 43.
    Kang, E. T., Neoh, K. G., & Ti, H. C. (1986). Electrical properties of chemically synthesized polypyrrole-halogen charge transfer complexes. Solid State Communications, 60, 457–459.CrossRefGoogle Scholar
  44. 44.
    Kang, E. T., Ti, H. C., Neoh, K. G., & Tan, T. C. (1988). ESCA analysis of polymer–acceptor interactions in chemically synthesized polypyrrole–halogen complexes. Polymer Journal, 20, 399–406.CrossRefGoogle Scholar
  45. 45.
    Hawkins, S. J., & Ratcliffe, N. M. (2000). A study of the effects of acid on the polymerisation of pyrrole, on the oxidative polymerisation of pyrrole and on polypyrrole. Journal of Materials Chemistry, 10, 2057–2062.CrossRefGoogle Scholar
  46. 46.
    Neoh, K. G., Tan, T. C., Kang, E. T., & Ridge, K. (1988). Chemical synthesis and characterization of polypyrrolc chlorine complex. Polymer (Guildf)., 29, 553–558.CrossRefGoogle Scholar
  47. 47.
    Camurlu, P. (2014). Polypyrrole derivatives for electrochromic applications. RSC Advances, 4, 55832–55845.CrossRefGoogle Scholar
  48. 48.
    Roncali, J., Blanchard, P., & Frere, P. (2005). 3,4-Ethylenedioxythiophene (EDOT) as a versatile building block for advanced functional pi-conjugated systems. Journal of Materials Chemistry, 15, 1589–1610.CrossRefGoogle Scholar
  49. 49.
    Chiu, W. W., Travaš-Sejdić, J., Cooney, R. P., & Bowmaker, G. A. (2006). Studies of dopant effects in poly(3,4-ethylenedi-oxythiophene) using Raman spectroscopy. Journal of Raman Specroscopy, 37, 1354–1361.CrossRefGoogle Scholar
  50. 50.
    Subramanian, P., Clark, N., Winther-Jensen, B., MacFarlane, D., & Spiccia, L. (2009). Vapour-phase polymerization of pyrrole and 3,4-ethylenedioxythiophene using iron(III) 2,4,6-trimethylbenzenesulfonate. Australian Journal of Chemistry, 62, 133–139.CrossRefGoogle Scholar
  51. 51.
    Garreau, S., Louarn, G., Buisson, J. P., Froyer, G., & Lefrant, S. (1999). In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules, 32, 6807–6812.CrossRefGoogle Scholar
  52. 52.
    Feng, Z.-Q., et al. (2013). Highly aligned poly(3,4-ethylene dioxythiophene) (PEDOT) nano- and microscale fibers and tubes. Polymer (Guildf)., 54, 702–708.CrossRefGoogle Scholar
  53. 53.
    Gustafsson, H., Kvarnström, C., & Ivaska, A. (2008). Comparative study of n-doping and p-doping of poly(3,4-ethylenedioxythiophene) electrosynthesised on aluminium. Thin Solid Films, 517, 474–478.CrossRefGoogle Scholar
  54. 54.
    Xu, Y., et al. (2009). A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Research, 2, 343–348.CrossRefGoogle Scholar
  55. 55.
    D’Arcy, J. M., et al. (2014). Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors. ACS Nano, 8, 1500–1510.CrossRefGoogle Scholar
  56. 56.
    Cho, W., et al. (2015). Synthesis and characterization of bicontinuous cubic poly(3,4-ethylene dioxythiophene) gyroid (PEDOT GYR) gels. Physical Chemistry Chemical Physics, 17, 5115–5123.CrossRefGoogle Scholar
  57. 57.
    Bader, R. F. W. (1990). Atoms in molecules: A quantum theoryNo title. Oxford: Oxford University Press.Google Scholar
  58. 58.
    Chen, Z., et al. (2018). Preparation and electrochemical performances of doped MXene/poly(3,4-ethylenedioxythiophene) composites. Materials Letters, 220, 305–308.CrossRefGoogle Scholar
  59. 59.
    Lu, X., Zhu, J., Wu, W., & Zhang, B. (2017). Hierarchical architecture of PANI@TiO2/Ti3C2Tx ternary composite electrode for enhanced electrochemical performance. Electrochimica Acta, 228, 282–289.CrossRefGoogle Scholar
  60. 60.
    Ren, Y., et al. (2018). Synthesis of polyaniline nanoparticles deposited on two-dimensional titanium carbide for high-performance supercapacitors. Materials Letters, 214, 84–87.CrossRefGoogle Scholar
  61. 61.
    Tong, Y., et al. (2018). Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2Tx toward high-performance electromagnetic wave absorption. Applied Surface Science, 434, 283–293.CrossRefGoogle Scholar
  62. 62.
    Marco, G., Emanuele, O., & Paolo, S. (2018). When 2D materials meet molecules: Opportunities and challenges of hybrid organic/inorganic van der Waals Heterostructures. Advanced Materials, 30, 1706103.CrossRefGoogle Scholar
  63. 63.
    Hunter, C. A., & Sanders, J. K. M. (1990). The nature of pi-pi interactions. Journal of the American Chemical Society, 112, 5525–5534.CrossRefGoogle Scholar
  64. 64.
    Ciesielski, A., & Samorì, P. (2014). Graphene via sonication assisted liquid-phase exfoliation. Chemical Society Reviews, 43, 381–398.CrossRefGoogle Scholar
  65. 65.
    An, H., et al. (2018). Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Science Advances, 4, eaaq0118.CrossRefGoogle Scholar
  66. 66.
    Zhou, Z., et al. (2018). Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage. Nanoscale, 10, 6005–6013.CrossRefGoogle Scholar
  67. 67.
    Naguib, M., et al. (2016). Ti3C2Tx (MXene)-polyacrylamide nanocomposite films. RSC Advances, 6, 72069–72073.CrossRefGoogle Scholar
  68. 68.
    A., M. E, et al. (2017). Preparation and characterization of polymer-Ti3C2Tx (MXene) composite nanofibers produced via electrospinning. Journal of Applied Polymer Science, 134, 45295.CrossRefGoogle Scholar
  69. 69.
    Boota, M., et al. (2017). Interaction of polar and nonpolar polyfluorenes with layers of two-dimensional titanium carbide (MXene): Intercalation and pseudocapacitance. Chemistry of Materials, 29, 2731–2738.CrossRefGoogle Scholar
  70. 70.
    Katti, K. S., Sikdar, D., Katti, D. R., Ghosh, P., & Verma, D. (2006). Molecular interactions in intercalated organically modified clay and clay – Polycaprolactam nanocomposites : Experiments and modeling. Polymer (Guildf)., 47, 403–414.CrossRefGoogle Scholar
  71. 71.
    Wu, Q., Xue, Z., Qi, Z., & Wang, F. (2000). Synthesis and characterization of PAn/clay nanocomposite with extended chain conformation of polyaniline. Polymer (Guildf)., 41, 2029–2032.CrossRefGoogle Scholar
  72. 72.
    Billingham, J., Breen, C., & Yarwood, J. (1997). Adsorption of polyamine, polyacrylic acid and polyethylene glycol on montmorillonite : An in situ study using ATR-FTIR. Vibrational Spectroscopy, 14, 19–34.CrossRefGoogle Scholar
  73. 73.
    Wang, H., et al. (2016). Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination. Applied Surface Science, 384, 287–293.CrossRefGoogle Scholar
  74. 74.
    Wang, H., Zhang, J., Wu, Y., Huang, H., & Jiang, Q. (2018). Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance. Journal of Physics and Chemistry of Solids, 115, 172–179.CrossRefGoogle Scholar
  75. 75.
    Zhang, H., et al. (2016). Preparation, mechanical and anti-friction performance of MXene/polymer composites. Materials and Design, 92, 682–689.CrossRefGoogle Scholar
  76. 76.
    Cao, Y., et al. (2017). Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene. RSC Advances, 7, 20494–20501.CrossRefGoogle Scholar
  77. 77.
    Huang, Z., et al. (2016). Structure and crystallization behavior of poly(ethylene oxide)/Ti3C2Tx MXene nanocomposites. Polymer (Guildf)., 102, 119–126.CrossRefGoogle Scholar
  78. 78.
    Liu, R., & Li, W. (2018). High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega, 3, 2609–2617.CrossRefGoogle Scholar
  79. 79.
    Cao, X., Wu, M., Zhou, A., Wang, Y., He, X., & Wang, L. (2017). Non-isothermal crystallization and thermal degradation kinetics of MXene/linear low-density polyethylene nanocomposites. e-Polymers, 17, 373.CrossRefGoogle Scholar
  80. 80.
    Han, R., Ma, X., Xie, Y., Teng, D., & Zhang, S. (2017). Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux. RSC Advances, 7, 56204–56210.CrossRefGoogle Scholar
  81. 81.
    Wu, X., et al. (2016). Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. Journal of Membrane Science, 515, 175–188.CrossRefGoogle Scholar
  82. 82.
    Hao, L., et al. (2017). Novel thin-film nanocomposite membranes filled with multi-functional Ti3C2Tx nanosheets for task-specific solvent transport. Composites. Part A, Applied Science and Manufacturing, 100, 139–149.CrossRefGoogle Scholar
  83. 83.
    Xu, Z., Liu, G., Ye, H., Jin, W., & Cui, Z. (2018). Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. Journal of Membrane Science, 563, 625.  https://doi.org/10.1016/j.memsci.2018.05.044.CrossRefGoogle Scholar
  84. 84.
    Zhang, J., et al. (2017). Sulfonated Ti3C2Tx to construct proton transfer pathways in polymer electrolyte membrane for enhanced conduction. Solid State Ionics, 310, 100–111.CrossRefGoogle Scholar
  85. 85.
    Shahzad, F., et al. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353, 1137–1140.CrossRefGoogle Scholar
  86. 86.
    Renhui, S., et al. (2017). Highly conductive transition metal carbide/Carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Advanced Functional Materials, 27, 1702807.CrossRefGoogle Scholar
  87. 87.
    Tang, H., et al. (2015). Growth of Polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Advanced Materials, 27, 1117–1123.CrossRefGoogle Scholar
  88. 88.
    Minshen, Z., et al. (2016). Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Advanced Energy Materials, 6, 1600969.CrossRefGoogle Scholar
  89. 89.
    Leiqiang, Q., et al. (2017). High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo1.33C MXene and PEDOT:PSS. Advanced Functional Materials, 28, 1703808.Google Scholar
  90. 90.
    Zhao, L., et al. (2017). Interdiffusion reaction-assisted hybridization of two-dimensional metal–organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano, 11, 5800–5807.CrossRefGoogle Scholar
  91. 91.
    Liu, G., et al. (2017). Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Applied Materials & Interfaces, 9, 40077–40086.CrossRefGoogle Scholar
  92. 92.
    Lin, H., Wang, X., Yu, L., Chen, Y., & Shi, J. (2017). Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Letters, 17, 384–391.CrossRefGoogle Scholar
  93. 93.
    Lin, H., Gao, S., Dai, C., Chen, Y., & Shi, J. (2017). A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. Journal of the American Chemical Society, 139, 16235–16247.CrossRefGoogle Scholar
  94. 94.
    Chen, J., et al. (2015). CO2 and temperature dual responsive “smart” MXene phases. Chemical Communications, 51, 314–317.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad Boota
    • 1
  1. 1.A. J. Drexel Nanomaterials Institute and Department of Materials Science & EngineeringDrexel UniversityPhiladelphiaUSA

Personalised recommendations