Chemical and Electrochemical Intercalation of Ions and Molecules into MXenes

  • Michael Ghidiu
  • Michael NaguibEmail author
  • Michel W. BarsoumEmail author


MXenes have hydrophilic interlayer spaces that can accommodate a large variety of intercalants. These are typically molecules such as H2O or dimethylsulfoxide (DMSO) or ions such as metal or ammonium cations. This chapter summarizes the body of literature that has explored exactly what compositions of intercalants have been studied, the nature and extent of the intercalation process, and the effects on structure of the MXenes and resulting changes to properties. This is of special interest due to MXene’s use in applications and devices involving electrochemical ion intercalation.Alkali, alkaline earth, transition metal, and alkylammonium (AA) cations are reviewed in-depth. The first three groups lead to co-intercalation with H2O molecules dependent upon environmental relative humidity, leading to reversible expansion of the basal spacing. The latter leads to a wide range of changes in basal spacing as a function of the structure and packing of the alkylammonium cations. Both chemical and electrochemical intercalation is discussed, and the material property changes that result are highlighted, ranging from electrical conductivity to mechanical properties.


Intercalation Water Ions Structure Properties Tuning 


  1. 1.
    Norrish, K. (1954). The swelling of montmorillonite. Discussions of the Faraday Society, 18, 120–134.CrossRefGoogle Scholar
  2. 2.
    de Paiva, L. B., Morales, A. R., & Valenzuela Díaz, F. R. (2008). Organoclays: Properties, preparation and applications. Applied Clay Science, 42(1–2), 8–24.CrossRefGoogle Scholar
  3. 3.
    Izawa, H., Kikkawa, S., & Koizumi, M. (1982). Ion exchange and dehydration of layered [sodium and potassium] titanates, Na2Ti3O7 and K2Ti4O9. The Journal of Physical Chemistry, 86(25), 5023–5026.CrossRefGoogle Scholar
  4. 4.
    Forsman, W. C., Dziemianowicz, T., Leong, K., & Carl, D. (1983). Graphite intercalation chemistry: An interpretive review. Synthetic Metals, 5(2), 77–100.CrossRefGoogle Scholar
  5. 5.
    Lerf, A., Buchsteiner, A., Pieper, J., Schöttl, S., Dekany, I., Szabo, T., & Boehm, H. P. (2006). Hydration behavior and dynamics of water molecules in graphite oxide. Journal of Physics and Chemistry of Solids, 67(5–6), 1106–1110.CrossRefGoogle Scholar
  6. 6.
    Schöllhorn, R., & Weiss, A. (1974). Cation exchange reactions and layer solvate complexes of termary phases MxMoS2. Journal of the Less Common Metals, 36, 229–236.CrossRefGoogle Scholar
  7. 7.
    Khan, A. I., & O’Hare, D. (2002). Intercalation chemistry of layered double hydroxides: Recent developments and applications. Journal of Materials Chemistry, 12(11), 3191–3198.CrossRefGoogle Scholar
  8. 8.
    Hou, X., Bish, D. L., Wang, S.-L., Johnston, C. T., & Kirkpatrick, R. J. (2003). Hydration, expansion, structure, and dynamics of layered double hydroxides. American Mineralogist, 88(1), 167–179.CrossRefGoogle Scholar
  9. 9.
    Maleski, K., Mochalin, V. N., & Gogotsi, Y. (2017). Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chemistry of Materials, 29(4), 1632–1640.CrossRefGoogle Scholar
  10. 10.
    Lukatskaya, M. R., Mashtalir, O., Ren, C. E., Dall’Agnese, Y., Rozier, P., Taberna, P. L., Naguib, M., Simon, P., Barsoum, M. W., & Gogotsi, Y. (2013). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341(6153), 1502–1505.CrossRefGoogle Scholar
  11. 11.
    Ling, Z., Ren, C. E., Zhao, M.-Q., Yang, J., Giammarco, J. M., Qiu, J., Barsoum, M. W., & Gogotsi, Y. (2014). Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences, 111(47), 16676–16681.CrossRefGoogle Scholar
  12. 12.
    Naguib, M., Unocic, R. R., Armstrong, B. L., & Nanda, J. (2015). Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Transactions, 44, 9353–9358.CrossRefGoogle Scholar
  13. 13.
    Ying, Y., Liu, Y., Wang, X., Mao, Y., Cao, W., Hu, P., & Peng, X. (2015). Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Applied Materials & Interfaces, 7(3), 1795–1803.CrossRefGoogle Scholar
  14. 14.
    Halim, J., Lukatskaya, M. R., Cook, K. M., Lu, J., Smith, C. R., Näslund, L.-Å., May, S. J., Hultman, L., Gogotsi, Y., Eklund, P., et al. (2014). Transparent conductive two-dimensional titanium arbide epitaxial thin films. Chemistry of Materials, 26(7), 2374–2381.CrossRefGoogle Scholar
  15. 15.
    Ghidiu, M., Halim, J., Kota, S., Bish, D., Gogotsi, Y., & Barsoum, M. W. (2016). Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chemistry of Materials, 28(10), 3507–3514.CrossRefGoogle Scholar
  16. 16.
    Ghidiu, M. (2018). Ions in MXene: Characterization and control of interlayer cations and their effects on structure and properties of 2D transition metal carbides. PhD Thesis.Google Scholar
  17. 17.
    Naguib, M., Come, J., Dyatkin, B., Presser, V., Taberna, P.-L., Simon, P., Barsoum, M. W., & Gogotsi, Y. (2012). MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochemistry Communications, 16(1), 61–64.CrossRefGoogle Scholar
  18. 18.
    Levi, M. D., Lukatskaya, M. R., Sigalov, S., Beidaghi, M., Shpigel, N., Daikhin, L., Aurbach, D., Barsoum, M. W., & Gogotsi, Y. (2014). Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Advanced Energy Materials, 5(1), 1400815.CrossRefGoogle Scholar
  19. 19.
    Ghidiu, M., Kota, S., Halim, J., Sherwood, A. W., Nedfors, N., Rosen, J., Mochalin, V. N., & Barsoum, M. W. (2017). Alkylammonium cation intercalation into Ti3C2 (MXene): Effects on properties and ion-exchange capacity estimation. Chemistry of Materials, 29(3), 1099–1106.CrossRefGoogle Scholar
  20. 20.
    Luo, J., Tao, X., Zhang, J., Xia, Y., Huang, H., Zhang, L., Gan, Y., Liang, C., & Zhang, W. (2016). Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano, 10(2), 2491–2499.CrossRefGoogle Scholar
  21. 21.
    Hendershot, W. H., & Duquette, M. (1986). A simple barium chloride method for determining cation exchange capacity and exchangeable cations1. Soil Science Society of America Journal, 50(3), 605–608.CrossRefGoogle Scholar
  22. 22.
    Muckley, E. S., Naguib, M., Wang, H.-W., Vlcek, L., Osti, N. C., Sacci, R. L., Sang, X., Unocic, R. R., Xie, Y., Tyagi, M., et al. (2017). Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water. ACS Nano, 11(11), 11118–11126.Google Scholar
  23. 23.
    Er, D., Li, J., Naguib, M., Gogotsi, Y., & Shenoy, V. B. (2014). Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Applied Materials & Interfaces, 6(14), 11173–11179.CrossRefGoogle Scholar
  24. 24.
    Xie, Y., Naguib, M., Mochalin, V. N., Barsoum, M. W., Gogotsi, Y., Yu, X., Nam, K.-W., Yang, X.-Q., Kolesnikov, A. I., & Kent, P. R. C. (2014). Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. Journal of the American Chemical Society, 136(17), 6385–6394.CrossRefGoogle Scholar
  25. 25.
    Mashtalir, O., Naguib, M., Mochalin, V. N., Dall’Agnese, Y., Heon, M., Barsoum, M. W., & Gogotsi, Y. (2013). Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4, 1716.CrossRefGoogle Scholar
  26. 26.
    Mashtalir, O., Lukatskaya, M. R., Kolesnikov, A. I., Raymundo-Piñero, E., Naguib, M., Barsoum, M. W., & Gogotsi, Y. (2016). The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale, 8(17), 9128–9133.CrossRefGoogle Scholar
  27. 27.
    Wang, L., Tao, W., Yuan, L., Liu, Z., Huang, Q., Chai, Z., Gibson, J. K., & Shi, W. (2017). Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chemical Communications, 53(89), 12084–12087.CrossRefGoogle Scholar
  28. 28.
    Ren, C. E., Hatzell, K. B., Alhabeb, M., Ling, Z., Mahmoud, K. A., & Gogotsi, Y. (2015). Charge- and size-selective ion sieving through Ti3C2T x MXene membranes. Journal of Physical Chemistry Letters, 6(20), 4026–4031.CrossRefGoogle Scholar
  29. 29.
    Come, J., Black, J. M., Lukatskaya, M. R., Naguib, M., Beidaghi, M., Rondinone, A. J., Kalinin, S. V., Wesolowski, D. J., Gogotsi, Y., & Balke, N. (2015). Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy, 17, 27–35.CrossRefGoogle Scholar
  30. 30.
    Berdiyorov, G. R., & Mahmoud, K. A. (2017). Effect of surface termination on ion intercalation selectivity of bilayer Ti3C2T2 (T=F, O and OH) MXene. Applied Surface Science, 416, 725–730.CrossRefGoogle Scholar
  31. 31.
    Lagaly, G. t., & Weiss, A. (1971). Anordnung Und Orientierung Kationischer Tenside Auf Silicatoberflächen. Kolloid-Zeitschrift und Zeitschrift für Polymere, 243(1), 48–55.CrossRefGoogle Scholar
  32. 32.
    Lagaly, G. (1986). Interaction of alkylamines with different types of layered compounds. Solid State Ionics, 22, 43–51.CrossRefGoogle Scholar
  33. 33.
    Zhu, J., He, H., Guo, J., Yang, D., & Xie, X. (2003). Arrangement models of alkylammonium cations in the interlayer of HDTMA+ pillared montmorillonites. Chinese Science Bulletin, 48(4), 368–372.Google Scholar
  34. 34.
    Fujita, T., Iyi, N., & Klapyta, Z. (1998). Preparation of azobenzene-mica complex and its photoresponse to ultraviolet irradiation. Materials Research Bulletin, 33(11), 1693–1701.CrossRefGoogle Scholar
  35. 35.
    Wang, X., Shen, X., Gao, Y., Wang, Z., Yu, R., & Chen, L. (2015). Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. Journal of the American Chemical Society, 137(7), 2715–2721.CrossRefGoogle Scholar
  36. 36.
    Gao, Q., Come, J., Naguib, M., Jesse, S., Gogotsi, Y., & Balke, N. (2017). Synergetic effects of K+ and Mg2+ ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti3C2 MXene. Faraday Discussions, 199, 393–403.CrossRefGoogle Scholar
  37. 37.
    Berdiyorov, G. R., Madjet, M. E., & Mahmoud, K. A. (2016). Ionic sieving through Ti3C2(OH)2 MXene: First-principles calculations. Applied Physics Letters, 108(11), 113110.CrossRefGoogle Scholar
  38. 38.
    Osti, N. C., Naguib, M., Ganeshan, K., Shin, Y. K., Ostadhossein, A., van Duin, A. C. T., Cheng, Y., Daemen, L. L., Gogotsi, Y., Mamontov, E., et al. (2017). Influence of metal ions intercalation on the vibrational dynamics of water confined between MXene layers. Physical Review Materials, 1(6), 065406.CrossRefGoogle Scholar
  39. 39.
    Römer, F. M., Wiedwald, U., Strusch, T., Halim, J., Mayerberger, E., Barsoum, M. W., & Farle, M. (2017). Controlling the conductivity of Ti3C2 MXenes by inductively coupled oxygen and hydrogen plasma treatment and humidity. RSC Advances, 7(22), 13097–13103.CrossRefGoogle Scholar
  40. 40.
    Hu, M., Li, Z., Hu, T., Zhu, S., Zhang, C., & Wang, X. (2016). High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical raman spectroscopy investigation. ACS Nano, 10(12), 11344–11350.CrossRefGoogle Scholar
  41. 41.
    Lukatskaya, M. R., Bak, S.-M., Yu, X., Yang, X.-Q., Barsoum, M. W., & Gogotsi, Y. (2015). Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Advanced Energy Materials, 5(15), 1500589.CrossRefGoogle Scholar
  42. 42.
    Overbury, S. H., Kolesnikov, A. I., Brown, G. M., Zhang, Z., Nair, G. S., Sacci, R. L., Lotfi, R., Van Duin, A. C. T., & Naguib, M. (2018). Complexity of intercalation in MXenes: Destabilization of urea by two-dimensional titanium carbide. Journal of the American Chemical Society, 140(32), 10305–10314.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Materials Science & EngineeringDrexel UniversityPhiladelphiaUSA
  2. 2.Department of Physics and Engineering PhysicsTulane UniversityNew OrleansUSA

Personalised recommendations