Advertisement

Robotic-Assisted Spine Surgery

  • Anthony E. Bozzio
  • Xiaobang Hu
  • Isador H. LiebermanEmail author
Chapter

Abstract

Spine surgery in patients with a deformity or those who require complex revisions or minimally invasive techniques can be challenging. Robotic-assisted spine surgery systems have shown promising initial results by facilitating a preoperative plan, increasing the accuracy of pedicle screw placement, and thereby reducing potential complications, decreasing operative time, and reducing radiation exposure in the operating room. The currently available robotic systems may show particular benefit in minimally invasive approaches as well. Advancements in spinal robotic systems are occurring rapidly, but further experience and rigorous studies will be required before the full potential of robotic-assisted systems can be realized.

Keywords

Robot Spine surgery 

References

  1. 1.
    Lanfranco AR, Castellanos AE, Desai JP, Meyers WC. Robotic surgery: a current perspective. Ann Surg. 2004;239(1):14–21.CrossRefGoogle Scholar
  2. 2.
    Shoham M, Burman M, Zehavi E, Joskowicz L, Batkilin E, Kunicher Y. Bone-mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Trans Robot Autom. 2003;19:893–901.CrossRefGoogle Scholar
  3. 3.
    Stuer C, Ringel F, Stoffel M, Reinke A, Behr M, Meyer B. Robotic technology in spine surgery: current applications and future developments. Acta Neurochir Suppl. 2011;109:241–5.CrossRefGoogle Scholar
  4. 4.
    Lee J, Kim K, Chung WK, Choi S, Kim YS. Human-guided surgical robot system for spinal fusion surgery: CoRASS. IEEE international conference on robotics and automation, 2008.Google Scholar
  5. 5.
    Lieberman IH, Togawa D, Kayanja MM, Reinhardt MK, Friedlander A, Knoller N, et al. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part I—Technical development and a test case result. Neurosurgery. 2006;59(3):641–50; discussion -50.CrossRefGoogle Scholar
  6. 6.
    Ortmaier T, Weiss H, Hagn U, Grebenstein M, Nickl M, Albu-Schaffer A, et al. A hands-on-robot for accurate placement of pedicle screws. Proceedings of the 2006 IEEE international conference on robotics and automation, 2006.Google Scholar
  7. 7.
    Lefranc M, Peltier J. Evaluation of the ROSA Spine robot for minimally invasive surgical procedures. Expert Rev Med Devices. 2016;13(10):899–906.CrossRefGoogle Scholar
  8. 8.
    Chenin L, Capel C, Fichten A, Peltier J, Lefranc M. Evaluation of screw placement accuracy in circumferential lumbar arthrodesis using robotic assistance and intraoperative flat-panel computed tomographY. World Neurosurg. 2017;105:86–94.CrossRefGoogle Scholar
  9. 9.
    Joseph JR, Smith BW, Liu X, Park P. Current applications of robotics in spine surgery: a systematic review of the literature. Neurosurg Focus. 2017;42(5):E2.CrossRefGoogle Scholar
  10. 10.
    Devito DP, Kaplan L, Dietl R, Pfeiffer M, Horne D, Silberstein B, et al. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine (Phila Pa 1976). 2010;35(24):2109–15.CrossRefGoogle Scholar
  11. 11.
    Pechlivanis I, Kiriyanthan G, Engelhardt M, Scholz M, Lucke S, Harders A, et al. Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: first experiences and accuracy of screw placement. Spine (Phila Pa 1976). 2009;34(4):392–8.CrossRefGoogle Scholar
  12. 12.
    Togawa D, Kayanja MM, Reinhardt MK, Shoham M, Balter A, Friedlander A, et al. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part 2—Evaluation of system accuracy. Neurosurgery. 2007;60(2 Suppl 1):ONS129–39; discussion ONS39.PubMedGoogle Scholar
  13. 13.
    Gaines RW Jr. The use of pedicle-screw internal fixation for the operative treatment of spinal disorders. J Bone Joint Surg Am. 2000;82-A(10):1458–76.CrossRefGoogle Scholar
  14. 14.
    Hicks JM, Singla A, Shen FH, Arlet V. Complications of pedicle screw fixation in scoliosis surgery: a systematic review. Spine (Phila Pa 1976). 2010;35(11):E465–70.CrossRefGoogle Scholar
  15. 15.
    Gautschi OP, Schatlo B, Schaller K, Tessitore E. Clinically relevant complications related to pedicle screw placement in thoracolumbar surgery and their management: a literature review of 35,630 pedicle screws. Neurosurg Focus. 2011;31(4):E8.CrossRefGoogle Scholar
  16. 16.
    Gelalis ID, Paschos NK, Pakos EE, Politis AN, Arnaoutoglou CM, Karageorgos AC, et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J. 2012;21(2):247–55.CrossRefGoogle Scholar
  17. 17.
    Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. Spine (Phila Pa 1976). 2007;32(3):E111–20.CrossRefGoogle Scholar
  18. 18.
    Shin BJ, James AR, Njoku IU, Hartl R. Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine. 2012;17(2):113–22.CrossRefGoogle Scholar
  19. 19.
    Kim HJ, Lee SH, Chang BS, Lee CK, Lim TO, Hoo LP, et al. Monitoring the quality of robot-assisted pedicle screw fixation in the lumbar spine by using a cumulative summation test. Spine (Phila Pa 1976). 2015;40(2):87–94.CrossRefGoogle Scholar
  20. 20.
    Hu X, Ohnmeiss DD, Lieberman IH. Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients. Eur Spine J. 2013;22(3):661–6.CrossRefGoogle Scholar
  21. 21.
    van Dijk JD, van den Ende RP, Stramigioli S, Kochling M, Hoss N. Clinical pedicle screw accuracy and deviation from planning in robot-guided spine surgery: robot-guided pedicle screw accuracy. Spine (Phila Pa 1976). 2015;40(17):E986–91.CrossRefGoogle Scholar
  22. 22.
    Kleck CJ, Cullilmore I, LaFleur M, Lindley E, Rentschler ME, Burger EL, et al. A new 3-dimensional method for measuring precision in surgical navigation and methods to optimize navigation accuracy. Eur Spine J. 2016;25(6):1764–74.CrossRefGoogle Scholar
  23. 23.
    Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J. 2011;20(6):860–8.CrossRefGoogle Scholar
  24. 24.
    Devito DP GT, Erickson M. Robotic-based guidance for pedicle screw instrumentation of the scoliotic spine. Spine Arthroplasty Society (SAS) 10th annual global symposium on motion preservation technology, 2010.Google Scholar
  25. 25.
    Hardenbrook MKN, Barzilay Y, et al. . Clinical experience with miniature robot for spinal surgery: 89 clinical cases. The 14th International Meeting on Advanced Spine Techniques (IMAST), Paradise Island (Bahamas), 2007.Google Scholar
  26. 26.
    Pfeiffer MSU, Hassel F, et al. First European experience with robotic assisted pedicle screw placement in the spine for fusion and dynamic stabilization (SpineAssist). 7th annual Spine Arthroplasty Society (SAS) global symposium on motion preservation technology, Berlin, 2007.Google Scholar
  27. 27.
    Sukovich W, Brink-Danan S, Hardenbrook M. Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist. Int J Med Robot. 2006;2(2):114–22.CrossRefGoogle Scholar
  28. 28.
    Hu X, Lieberman IH. What is the learning curve for robotic-assisted pedicle screw placement in spine surgery? Clin Orthop Relat Res. 2014;472(6):1839–44.CrossRefGoogle Scholar
  29. 29.
    Meir AR, Purushothamdas S. Computer-assisted spinal surgery for deformity—a review. Eur Musculoskelet Rev. 2011;6:48–54.Google Scholar
  30. 30.
    Lieberman IH, Hardenbrook MA, Wang JC, Guyer RD. Assessment of pedicle screw placement accuracy, procedure time, and radiation exposure using a miniature robotic guidance system. J Spinal Disord Tech. 2012;25(5):241–8.CrossRefGoogle Scholar
  31. 31.
    Papadopoulos EC, Girardi FP, Sama A, Sandhu HS, Cammisa FP Jr. Accuracy of single-time, multilevel registration in image-guided spinal surgery. Spine J. 2005;5(3):263–7; discussion 8.CrossRefGoogle Scholar
  32. 32.
    Takahashi J, Hirabayashi H, Hashidate H, Ogihara N, Kato H. Accuracy of multilevel registration in image-guided pedicle screw insertion for adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2010;35(3):347–52.CrossRefGoogle Scholar
  33. 33.
    Rampersaud YR, Foley KT, Shen AC, Williams S, Solomito M. Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine (Phila Pa 1976). 2000;25(20):2637–45.CrossRefGoogle Scholar
  34. 34.
    Singer G. Occupational radiation exposure to the surgeon. J Am Acad Orthop Surg. 2005;13(1):69–76.CrossRefGoogle Scholar
  35. 35.
    Smith HE, Welsch MD, Sasso RC, Vaccaro AR. Comparison of radiation exposure in lumbar pedicle screw placement with fluoroscopy vs computer-assisted image guidance with intraoperative three-dimensional imaging. J Spinal Cord Med. 2008;31(5):532–7.CrossRefGoogle Scholar
  36. 36.
    Ul Haque M, Shufflebarger HL, O’Brien M, Macagno A. Radiation exposure during pedicle screw placement in adolescent idiopathic scoliosis: is fluoroscopy safe? Spine (Phila Pa 1976). 2006;31(21):2516–20.CrossRefGoogle Scholar
  37. 37.
    Wu H, Gao ZL, Lu ZW, Yang XY, Wang Y, Ying HL. Radiation exposure to spine surgeon: a comparison of computer-assisted navigation and conventional technique. Zhongguo Gu Shang. 2009;22(11):874–6.PubMedGoogle Scholar
  38. 38.
    Boris S, Alik B, Vitaly A. Robot guided surgery in treatment of osteoporotic fractures. European Federation of National Associations of Orthopaedics and Traumatology (EFORT) Annual Congress, 2011.Google Scholar
  39. 39.
    Zaulan Y, Alexandrovsky V, Khazin F. Robotic assisted vertebroplasty: our experience with a novel approach to the treatment of vertebral compression fractures. World Society for Endoscopic Navigated and Minimal Invasive Spine Surgery (WENMISS) annual congress, London, 2008.Google Scholar
  40. 40.
    Ledonio CG, Polly DW Jr, Vitale MG, Wang Q, Richards BS. Pediatric pedicle screws: comparative effectiveness and safety: a systematic literature review from the Scoliosis Research Society and the Pediatric Orthopaedic Society of North America task force. J Bone Joint Surg Am. 2011;93(13):1227–34.CrossRefGoogle Scholar
  41. 41.
    Hu X, Lieberman IH. Use of robotic assisted pedicle screw placement in deformity and revision spine surgery. The 19th international meeting on advanced spine techniques (IMAST), Istanbul, 2012.Google Scholar
  42. 42.
    Cannestra A, Sweeney T, Poelstra K, Schroerlucke S. Surgical outcomes of robotic-guidance vs. freehand instrumentation: a retrospective review of 705 adult degenerative spine patients operated in minimally invasive and open approaches. Society for Minimally Invasive Spine Surgery (SMISS) Annual Forum, 2016.Google Scholar
  43. 43.
    Watkins RG, Gupta A, Watkins RG. Cost-effectiveness of image-guided spine surgery. Open Orthop J. 2010;4:228–33.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anthony E. Bozzio
    • 1
  • Xiaobang Hu
    • 2
  • Isador H. Lieberman
    • 2
    Email author
  1. 1.Texas Back InstitutePlanoUSA
  2. 2.Texas Back Institute, Texas Health Presbyterian Hospital Plano, Scoliosis and Spine Tumor CenterPlanoUSA

Personalised recommendations